期刊文献+

SOME SEMI-BENT FUNCTIONS WITH POLYNOMIAL TRACE FORM 被引量:2

SOME SEMI-BENT FUNCTIONS WITH POLYNOMIAL TRACE FORM
原文传递
导出
摘要 This paper is devoted to the study of semi-bent functions with several parameters flexible on the finite field F2n.Boolean functions defined on F2n of the form f(r)ab(x) =Trn1(axr(2m-1))+Tr41(bx(2n-1)/5) and the form g(rs)abcd(x)=Trn1(axr(2m-1))+Tr41(bx(2n-1)/5)+Trn1(cx(2m-1)1/2+1)+Trn1(dx(2m-1)s+1) where n = 2m,m = 2(mod 4),a,c ∈ F2n,and b ∈ F(16),d ∈ F2,are investigated in constructing new classes of semi-bent functions.Some characteristic sums such as Kloosterman sums and Weil sums are employed to determine whether the above functions are semi-bent or not.
机构地区 Department of Math
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第4期777-784,共8页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11371011
关键词 Boolean function Dickson polynomial exponential sum Kloosterman sum semi-bentfunction Walsh-Hadamard transformation Weil sum. TRACE FORM Kloosterman和 多项式 ABCD 布尔函数 有限域 弯曲
  • 相关文献

参考文献11

  • 1Rothus O, On "bent" functions. J. Combin. Theory Set. A, 1976, 20: 300-305.
  • 2Chee S, Lee S, and Kim K, Semi-bent Functions. Advances in Cryptology-ASIACRYPT'94, 4th Int. Conf. on the Theory and Applications of Cryptology, Wollongong, Australia (eds. by Pieprzyk J and Safavi-Naini R), Lecture Notes on Computer Science, 1994, 917: 107-118.
  • 3Zeng X, Carlet C, Shan J, and Hu L, More balanced Boolean functions with optimal algebraic immunity and nonlinearity and resistance to fast algebraic attacks, IEEE Transactions on Infor- mation Theory, 2011, 57(9): 6310-6320.
  • 4Zheng Y and Zhang X, Plateaued functions. Advances in Cryptology-ICICS 1999, Lecture Notes in Computer Science, 1726, Springer-Verlag, Berlin, Germany, 1999.
  • 5Mesnager S, Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials, IEEE Transactions on Information Theory, 2011, 57(11): 7443--7458.
  • 6Wang B, Tang C, Qi Y, Yang Y, and Xu M, A new class of hyper-bent Boolean functions in binomial forms, CoRR, abs/ll12.0062, 2011.
  • 7Wang B, Tang C, Qi Y, Yang Y, and Xu M, A generalization of the class of hyper-bent Boolean functions in binomial forms. Cryptology ePrint Archive, Report 2011/698, http://eprint.iacr.org/, 2011.
  • 8Charpin P, Pasalic E, and Tavernier C, On bent and semi-bent quadratic Boolean functions, IEEE Transactions on Information Theory, 2005, 51(12): 4286-4298.
  • 9Lachaud G and Wolfmann J, The weights of the orthogonal of the extended quadratic binary Goppa codes, IEEE Transactions on Information Theory, 1990, 36(3): 686-692.
  • 10Lidl R, Mullen G, and Turnwald G, Dickson Polynomials. Pitman Monographs in Pure and Applied Mathematics, Addison-Wesley, 1993, 65.

同被引文献24

  • 1Rothaus 0 S.On bent functions[J].Journal of Combinatorial Theory(series A),1976,20:300-305.
  • 2Packer M G.Constabent properties of Golay-Davis-Jedwab sequences[J].IEEE Int Symp Inf Theory,2000.
  • 3Riera C,Packer M G.Generalized bent criteria for Boolean functions(l)[J].IEEE Trans Inf Theory,2006,52(9):4142-4159.
  • 4Parker M G,Pott A.On Boolean functions which are bent and negabent[J].Sequence,Subsequence,Consequences,Lecture Notes Comput Sci,2007,4893:9-23.
  • 5Schmidt K-U,Parker M G,Pott A.Negabent functions in the Maiorana-McFarland class[J].Sequences and Their Applications,2008,5203:390-402.
  • 6Stanica P,Gangopadhyay S,Chaturvedi A,Gangopadhyay A K,Maitra S.Nega-Hadamard transform,bent and negabent functions[J].Sequences and Their Applications,2010,6338:359-372.
  • 7Stanica P,Gangopadhyay S,Chaturvedi A,Gangopadhyay A K,Maitra S.Investigations on bent and negabent functions via the nega-Hadamard transform[J].IEEE Trans Inf Theory,2012,58(6):4064-4072.
  • 8Su W,Pott A,Tang X.Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree[J].IEEE Trans Inf Theory,2013,59(6):3387-3395.
  • 9Zhang F,Wei Y,Pasalic E.Constructions of bent-negabent functions and their relation to the complete and maiorana-mcfarland class[J].IEEE Trans Inf Theory,2015,61(3):1496-1506.
  • 10Dillon J F.Elementary Hadamard Difference Sets[M].University of Maryland,1974.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部