期刊文献+

模拟体液中的尿酸对AZ31B镁合金腐蚀行为的影响 被引量:3

Effect of Uric Acid in Simulated Body Fluid on Corrosion Behavior of AZ31B Magnesium Alloy
下载PDF
导出
摘要 过去,探讨高尿酸浓度体液中AZ31B锾合金腐蚀状况的研究不多。采用开路电位、交流阻抗谱和失重法等研究了AZ31B镁合金在不同尿酸浓度的模拟体液中的腐蚀行为。结果表明:在模拟体液中尿酸会加快镁合金的腐蚀,但是尿酸加入量与腐蚀速度不是简单的线性关系,尿酸浓度较小时其对腐蚀速率影响较大,当尿酸浓度超过104μmoWL后,镁合金的腐蚀速率不再显著增大;镁合金的失重速率随着浸泡时间的延长而减小,经8~12d的浸泡后,镁合金的腐蚀过程基本达到稳定状态。 The corrosion behavior of AZ31 B magnesium alloy in simulated body fluid containing uric acid was studied with open circuit potential method,electrochemical impedance spectroscopy and weight loss method.Results showed that introducing uric acid in the simulated body fluid accelerated the corrosion process of the Mg alloy,but the dosage of the uric acid was not simply linearly proportional to the corrosion rate of the Mg alloy.Namely,when the concentration of uric acid was relatively low,introducing uric acid had significant effect on the corrosion rate of the Mg alloy in the simulated body fluid.However,when the concentration of uric acid was above 104 μmol/L,the corrosion rate of the Mg steel in the simulated body fluid tended to be stabilized.In general,the mass loss rate of the Mg alloy in the simulated body fluid tended to decline with extending time of immersion,and its corrosion process reached a stable state after 8~12 d of immersion.
出处 《材料保护》 CAS CSCD 北大核心 2014年第9期64-66,9,共3页 Materials Protection
基金 腐蚀与防护四川省重点实验室资助项目(2012CL01 2012CL07) 四川理工学院人才引进项目(2012RC16)资助
关键词 AZ31B镁合金 尿酸 模拟体液 开路电位 交流阻抗谱 失重法 腐蚀行为 AZ31B magnesium alloy uric acid simulated body fluid open circuit potential electrochemical impedance spectroscopy weight loss corrosion behavior
  • 相关文献

参考文献9

  • 1Saris N E L, Mervaala E, Karppanen H, et al. Magnesium: an update on physiological, clinical and analytical aspects [J]. Clin Chim Acta, 2000, 294(1/2) :1 -26.
  • 2Choudhary L, Raman R K S. Magnesium alloys as body im- plants: Fracture mechanism under dynamic and static load- ings in a physiological environment [ J ]. Acta Biomater, 2012,8(2) :916 -923.
  • 3王勇,高家诚,张艳,周详发,伍沙.纯镁在模拟体液中的腐蚀机理[J].中国有色金属学报,2007,17(12):1981-1986. 被引量:22
  • 4Wolf F I, Cittadini A. Chemistry and biochemistry of mag- nesium [ J ]. Mol Aspect Med,2003,24:3 - 9.
  • 5Witte F. The history of biodegradable magnesium implants :a review [J]. Acta Biomater,2010,6(5):1 680 - 1 692.
  • 6Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials - Principles of property design for Mg- RE alloys [J]. Acta Biomater, 2010, 6(5): 1 714 -1 725.
  • 7Zhang C Y, Zeng R C, Liu C L, et al. Comparison of calci- um phosphate coatings on Mg-A1 and Mg-Ca alloys and their corrosion behavior in Hank' s solution [ J ]. Surf Coat Tech- nol,2010, 204:3 636 -3 640.
  • 8Kirkland N T, Birbilis N, Staiger M P. Assessing the corro- sion of biodegradable magnesium implants : A critical review of current methodologies and their limitations [ J ]. Acta Biomater, 2012, 8(3):925 -936.
  • 9宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为[J].物理化学学报,2006,22(10):1222-1226. 被引量:43

二级参考文献34

  • 1任伊宾,黄晶晶,杨柯,张炳春,姚治铭,王浩.纯镁的生物腐蚀研究[J].金属学报,2005,41(11):1228-1232. 被引量:56
  • 2宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为[J].物理化学学报,2006,22(10):1222-1226. 被引量:43
  • 3Levesque,J.; Dube,D.; Fiset,M.; Mantowani,D.Advanced Materials and Processes,2004,162(9):45
  • 4Witte,F.; Kaese,V.; Haferkamp,H.Biomaterials,2005,26:3557
  • 5McBride,E.D.J.Am.Med.Assoc.,1938,111(27):2464
  • 6Song,G.Advanced Engineering Materials,2005,7(7):563
  • 7Song,G.; StJohn D.; Bettles,C.; Dunlop,G.JOM,2004,56(11):43
  • 8Song,G.; StJohn,D.; Johhannesson,B.; Hapugoda,S.Corrosion Science,2004,46(6):955
  • 9Song,G.; StJohn,D.Corrosion Science,2004,46(6):1381
  • 10Song,G.; StJohn,D.Journal of Light Metals,2002,2(1):1

共引文献57

同被引文献44

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部