期刊文献+

计算机辅助诊断技术在脑部CT诊断中的应用

Application of computer-aided diagnosis technique in the diagnosis of brain CT
下载PDF
导出
摘要 近年来计算机辅助诊断成为医学影像学中的研究热点课题之一,将基于灰度共生矩阵和BP神经网络的计算机辅助诊断技术应用到脑CT图像诊断中。首先,在分析灰度共生矩阵的基础上提取了能量、对比度、相关度和熵等纹理特征参数;然后,利用BP神经网络设计了一个分类器,用来对特征向量进行分类;最后,实验结果表明此方法可以有效的区分正常与异常的脑部CT图像,为医师的诊断提供辅助信息。 In recent years, computer-aided diagnosis has become one of the most popular topic in the field of medical imaging. Computer aided-diagnosis technology based on GLCM and BP Neural Network is applied to the diagnosis of brain CT images in this paper. Firstly, texture features such as energy, contrast, relevance and entropy are extracted on the basis of analysis of GLCM. Secondly, a classifier designed by using BP neural network is used to classify the feature vectors. Finally, the experimental results show that this method can effectively distinguish between normal and abnormal brain CT images, it provides auxiliary information for the doctors' diagnosis.
作者 李浩 傅志中
出处 《信息技术》 2014年第9期178-181,共4页 Information Technology
关键词 计算机辅助诊断 灰度共生矩阵 BP神经网络 纹理特征 computer-aided diagnosis gray level co-occurrence matrix BP neural network texture features
  • 相关文献

参考文献4

二级参考文献37

  • 1姜兴岳,耿道颖,沈天真,陈星荣,叶晨洲,杨杰.人工神经元网络鉴别星形胶质细胞瘤良恶性的初步研究[J].中国医学计算机成像杂志,2004,10(4):217-220. 被引量:11
  • 2孙哲,黎庶,徐惠绵.数字化乳腺X线计算机辅助诊断系统临床应用价值的初步探讨[J].中华医学杂志,2005,85(24):1692-1695. 被引量:14
  • 3陈自谦,张碧云,赵政文,卢光明.数字化X线胸片计算机辅助检测在肺结节诊断中的应用价值[J].医学研究生学报,2005,18(7):629-631. 被引量:8
  • 4[2]Baum F,Fischer U,Obenauer S,Grabbe E.Computer-aided detection in direct digital full-field mammography:initial results[J].Eur Radiol,2002,12(12):3015-3017.
  • 5[3]Yang S K,Moon W K,Cho N,et al.Screening mammography detected cancers:sensitivity of a computer-aided detection system applied to full-field digital mammograms[J].Radiology,2007,244 (1):104-111.
  • 6[4]Jae L,Gordon G,Julianna C,et al.Lung nodule detection on chest CT:Evaluation of a computer-aided detection (CAD) system[J].NY Korean J Radiol,2005,6(2):89-93.
  • 7[7]Sundaram P,Zomorodian A,Beaulieu C.Colon polyp detection using smoothed shape operators:Preliminary results.Med Image Anal.2007 Aug 25;[Epub ahead of print]
  • 8[10]Li F,Aoyama M,Shiraishi J,et al.Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT by using computer-estimated likelihood of malignancy[J].AJR,2004,183:1209-1215.
  • 9[11]Li Q,Li F,Shiraishi J,et al.Investigation of newpsychophysical measures for evaluation of similar images on thoracic CT for distinction between benign and malignant nodules[J].Med Phys,2003,30:2584-2593.
  • 10HARALICK R M. Statistical and structural Approaches to Texture [J]. proceeding of IEEE, 1975,67(5) :786 -504.

共引文献293

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部