摘要
提出一种改进的适用于智能安防领域中离岗检测的目标跟踪算法,该算法结合均值漂移算法和粒子滤波算法的优点,先使用均值漂移算法对目标进行预跟踪,然后在此基础上使用粒子滤波对目标精确定位,在保证了跟踪准确率的前提下缩短了算法的计算时间。此外,针对监控视频大多分辨率低,目标辨识度不高等特点,在本文中,原始视频流的灰度信息和纹理信息被作为待跟踪目标的特征。实验结果证明,采用该混合特征的目标跟踪算法比其他同类算法在目标跟踪的准确率和实时性上具有更好的表现,能够适应更广泛的视频场景。
In this paper,we propose an improved obj ect tracing algorithm which is suitable for off-position detection in intelligent security filed.This algorithm takes advantage of mean shift and particle filter,pre-traces the obj ect by the mean-shift algorithm and then calculates the accurate position by particle algorithm,which shortens computing time on the premise of insuring tracing accuracy.Besides,according to the problem that the low-resolution and low contrast of surveillance vide-o,a new hybrid feature based on the gray scale information and texture information is regarded as the main feature of obj ect in video scene.At last,experiment results prove that the improved obj ect tracing algorithm with hybrid feature have better performance of tracking accuracy and real-time,which is applied more widely than other algorithms.
出处
《计算技术与自动化》
2014年第3期88-91,共4页
Computing Technology and Automation
关键词
目标跟踪
均值漂移
粒子滤波
混合特征
离岗检测
obj ect tracing
mean-shift
particle filter
hybrid feature
off-position detection