摘要
讨论了有序Banach空间E中的非线性Robin边值问题:-u″(t)=f(t,u(t)),0≤t≤1,u(0)=u′(1)=θ解的存在性,其中f:[0,1]×E→E连续。在不假定f满足非紧性测度条件及上下解存在的情形下,通过算子谱理论与半序方法获得了解的存在性结果。
The existence of solutions for nonlinear Robin boundary value problem-u″(t)=f(t,u(t))0≤t≤1,u(0)=u′(1)=θ in ordered Banach spaces E was discussed, where f:[0,1]×E→E is continuous, neither using noncompactness measure condition nor assuming the existence of upper and lower solutions, the existence results of solutions are obtained by employing spectral analysis and semi-order method.
出处
《咸阳师范学院学报》
2014年第4期1-3,共3页
Journal of Xianyang Normal University
基金
甘肃省教育厅科研基金项目(2013B-086)
陇东学院科研基金项目(XYZK1109)
关键词
边值问题
闭凸锥
谱半径
boundary value problems
closed convex cone
spectral radius