期刊文献+

基于改进最大似然方法的多光谱遥感图像分类方法 被引量:12

A Multi-spectral Remote Sensing Image Classification Technique Based on Improved ML Algorithm
下载PDF
导出
摘要 最大似然(ML)分类方法是一种典型的基于统计分析的监督分类方法,从理论上讲,具有最小出错率与最高分类精度的特点。但最大似然分类方法是以数据的正态分布假设为前提的,这在真实遥感数据中很难满足,从而导致分类精度下降。根据数据分布可以以任意精度由多个正态分布的线性组合表示,对最大似然分布的数据分布进行修正,既提高了数据模型的正确性,又充分利用正态分布的优点。最大似然分类方法的训练样本挑选也具有一定的随意性和主观性,先验概率直接影响分类结果,而且对整幅图像采用同样的先验概率会导致分类精度下降。针对训练样本的选择问题,先用ISODATA聚类算法对数据进行聚类,对比参考分类图像选择训练区域,一方面利用聚类结果可以选择性质均匀的区域,另一方面使得样本的选择变得简单,最后进行了遥感数据的分类实验。实验结果证明了该方法不仅可以实现遥感数据的分类,而且具有较高的总体分类精度和Kappa系数。 Maximum Likelihood (ML) classification method is based on the assumption that the data are normally distributed,which is not always true for the realistic remote sensing data ,and may result in decrease of classification accuracy .The classification results are impacted directly by the prior probability .The selection of training samples is somewhat stochastic and subjective .The ML method uses the same prior probability for the whole image,which will also reduce the classification accuracy .Theoretically,every smooth density function can be approximated to within any accuracy by such a mixture of normal densities .Thus the first problem of ML can be solved by using a combination of several normal functions instead of one .In this way,a very general capability can be provided ,while still maintaining the convenient properties of the normal assumption.For the second problem,ISODATA is used to make a clustering image of the original data ,after that,one can select the training areas of the image by comparing with the reference image .At last,the result of experiment shows that the proposed methods can not only realize the classification of remote sensing image but also achieve very high accuracy visually and mathematically in overall accuracy and Kappa coefficient .
出处 《电光与控制》 北大核心 2014年第10期52-56,74,共6页 Electronics Optics & Control
基金 国家自然科学基金(61032001 60801049) 国家"八六三"计划创新基金(2010AAJ140)
关键词 多光谱 遥感图像 最大似然分类 分类精度 multi-spectral remote sensing image maximum likelihood classification classification accuracy
  • 相关文献

参考文献17

  • 1牛志宇,赵慧洁.基于光谱知识的高光谱图像自动识别方法[J].北京航空航天大学学报,2012,38(2):280-284. 被引量:3
  • 2赵春晖,张燚,王玉磊.基于小波核主成分分析的相关向量机高光谱图像分类[J].电子与信息学报,2012,34(8):1905-1910. 被引量:19
  • 3MEMARSADEGHI NMOUNT D MNETANYAHU N Set al.A fast implementation of the ISODATA clustering algorithm[J].International Journal of Computational Geometry and Applications200717:71-103.
  • 4STRAHLER A H.The use of prior probabilities in maximum likelihood classification of remotely sensed data[J].Remote Sensing of Environment198010:135-163.
  • 55ITKENHEAD M JAALDERS I H.Classification of landsat thematic mapper imagery for land cover using neural networks[J].International Journal of Remote Sensing 200829(7):4129-4150.
  • 6BRUZZONE LPRIETO D FSERPICO S B.A neuralstatistical approach to multitemporal and multisource remotesensing image classification[J].IEEE Transactions on Geoscience and Remote Sensing199937(3):1350-1359.
  • 7RANIA CDEEPA S N.PSO with mutation for fuzzy classifier design[J].Procedia Computer Science20102:307-313.
  • 8MATHER P MKOCH M.Computer processing of remotelysensed images:An introduction[M].New York:John Wiley & SonsLtd2011:229-285.
  • 9LEITE P B CFEITOSA R QFORMAGGIO A Ret al.Hidden Markov models for crop recognition in remote sensing image sequences[J].Pattern Recognition Letters 201132:19-26.
  • 10STUMPF AKERLE N.Combining random forests and objectoriented analysis for landslide mapping from very high resolution imagery[J].Procedia Environmental Sciences20113:14-19.

二级参考文献23

  • 1赵慧洁,李娜,贾国瑞,董超.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11):1333-1336. 被引量:6
  • 2王润生,杨苏明,阎柏琨.成像光谱矿物识别方法与识别模型评述[J].国土资源遥感,2007,19(1):1-9. 被引量:52
  • 3黄光玉,沈占锋,赵欣梅.高光谱遥感矿物识别方法研究[J].资源环境与工程,2007,21(1):50-54. 被引量:15
  • 4Clark R N, Swayze G A, Livo K E, et al. Imaging spectroscopy: earth and planetary remote sensing with the USGS tetracorder and expert systems[ J ]. Journal of Geophysical Research,2003, 108(12) :1 -44.
  • 5Swayze G A, Clark R N, Goetz A F H, et al. Effects of spectrometer band pass, sampling,and signaho-noise ratio on spectral iden- tification using the Tetracorder algorithm [ J ]. Journal of Geo- physical Research,2003,108 ( E9 ) :5105 - 5134.
  • 6Cortes C and Vapnik V. Support-vector networks[J]. MachineLearning, 1995, 20(3): 273-297.
  • 7Bishop C and Tipping M. Variational relevance vectormachines[C]. Proceedings of the 16th Conference onUncertainty in Artificial Intelligence, Stanford, California,USA. June 30-July 3, 2000: 46-53.
  • 8Tipping M. Sparse bayesian learning and the relevance vectormachine[J]. Machine Learning Research, 2001, 1: 211-244.
  • 9Bilgin G, Erturk S, and Yildirim T. Segmentation ofhyperspectral images via subtractive clustering and clustervalidation using one-class support vector machines[J]. IEEETransactions on Geoscience and Remote Sensing, 2011,49(8): 2936-2944.
  • 10Oliveri G and Massa A. Bayesian compressive sampling forpattern synthesis with maximally sparse non-uniform lineararrays[J]. IEEE Transactions on Antennas and Propagation,2011, 59(2): 467-481.

共引文献20

同被引文献204

引证文献12

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部