期刊文献+

考虑约束的卫星抗扰反步姿态控制

Disturbance Rejection Backstepping Attitude Control for Satellite with Saturation Constraints
下载PDF
导出
摘要 针对具有不确定性、外干扰及饱和约束的卫星非线性姿态跟踪问题,将约束反步法与状态观测器相结合,提出分块自适应抗扰反步控制器。卫星模型由修正罗德里格参数进行描述。利用带参数投影的非线性扩张状态观测器对时变的"总干扰"项进行在线估计补偿,以提高反步控制器的鲁棒性。在设计反步控制器时,引入指令滤波器和修正跟踪误差信号以施加系统状态和执行器的饱和限制,同时较容易获得虚拟控制导数,并且放宽了干扰估计律投影算子的投影集范围。Lyapunov理论证明了闭环系统在非线性阻尼的作用下输入-状态稳定。对比仿真表明,与传统自适应反步法相比,所提出的控制器具有更高的姿态跟踪性能和干扰估计精度。 A modular adaptive disturbance rejection backstepping controller is proposed for the nonlinear attitude tracking of satellite in the presence of uncertainties ,external disturbances and saturation constraints, which combines the theory of Nonlinear Extended State Observer (NESO) with constrained backstepping. Firstly,the satellite attitude is represented by Modified Rodrigues Parameters (MRP).And the NESO with parameter projection is employed to estimate and compensate the time -varying total disturbances on line for improving the robustness of backstepping controller .Then the backstepping controller is derived by introducing command filters and modified tracking errors to implement any operating constraints and obtain the derivatives of virtual control easily,which can also enlarge the projection sets of the disturbance estimation laws .Lyapunov theory proves that the closed -loop input-to-state stability is guaranteed under the effect of nonlinear damping . Comparative simulations state that the proposed controller has better performance in achieving precise attitude tracking and estimation of disturbance than classical adaptive backstepping .
出处 《电光与控制》 北大核心 2014年第10期99-105,共7页 Electronics Optics & Control
基金 国家自然科学基金(61203007)
关键词 姿态跟踪 修正罗德里格参数 反步法 扩张状态观测器 饱和约束 attitude tracking modified Rodrigues parameter backstepping extended state observer saturation constraint
  • 相关文献

参考文献17

  • 1ACQUATELLA P J, FALKENA W, VAN KAMPEN E J, et al. Robust nonlinear spacecraft attitude control using incre- mental nonlinear dynamic inversion[ C ]//AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, 2012. doi : 10. 2514/6.2012-4623.
  • 2LU K F, XIA Y Q, FU M Y. Controller design for rigid spacecraft attitude tracking with actuator saturation [ J ]. Information Sciences, 2013, 220:343-366.
  • 3王翔宇,丁世宏,李世华.基于反步法的挠性航天器姿态镇定[J].航空学报,2011,32(8):1512-1523. 被引量:11
  • 4ALI I, RADICE G, KIM J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver [J]. Journal of Guidance, Control, and Dynamics, 2010, 33 ( 1 ) :254-259.
  • 5KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design [ M ]. New York :John Wiley & Sons, Inc, 1995.
  • 6KRSTIC M, On using least-squares updates without regressor fihering in identification and adaptive control of non- linear systems[J]. Automatics 2009, 45 ( 3 ) :731-735.
  • 7WANG W W, GAO Z Q. A comparison study of advanced state observer design techniques [ C ]//American Control Conference, Denver, Colorado, USA, 2003:4754-4759.
  • 8CHEN M, GE S S, REN B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints [ J ]. Automatica, 2011, 47 ( 3 ) :452-465.
  • 9FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping [ J ], IEEE Transactions on Automatic Control, 2009, 54(6) : 1391-1395.
  • 10SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive back- stepping [ J ]. Journal of Guidance, Control, and Dynamics, 2007, 30(2) :322-336.

二级参考文献46

  • 1战毅,张洪华.全局稳定的含积分项的姿态跟踪控制律[J].控制工程(北京),2006(1):9-16. 被引量:5
  • 2郑敏捷,徐世杰.欠驱动航天器姿态控制系统的退步控制设计方法[J].宇航学报,2006,27(5):947-951. 被引量:17
  • 3王彪,唐超颖.航天器姿态的神经网络动态逆控制[J].系统工程与电子技术,2007,29(2):246-249. 被引量:6
  • 4Di Gennaro S. Output stabilization of flexible spacecraft with active vibration suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 747-759.
  • 5Di Gennaro S. Passive attitude control of flexible spacecraft from quaternion measurements[J]. Journal of Optimization Theory and Applications, 2003, 116(1): 41-60.
  • 6Liu S W, Singh T. Robust time-optimal control of flexible structures with parametric uncertainty[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1997, 119(4): 743-748.
  • 7Sharma R, Tewari A. Optimal nonlinear tracking of spacecraft attitude maneuvers[J]. IEEE Transactions on Control Systems Technology, 2004, 12(5): 677-682.
  • 8Shahravi M, Kabganian M, Alasty A. Adaptive robust attitude control of a flexible spacecraft[J]. International Journal of Robust and Nonlinear Control, 2006, 16(6): 287-302.
  • 9Hu Q L. Robust adaptive backstepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of Sound and Vibration, 2009, 327(3/4/5): 285-298.
  • 10Jin E D, Sun Z W. Robust attitude tracking control of flexible spacecraft for achieving globally asymptotic stability[J]. International Journal of Robust and Nonlinear Control, 2009, 19(11): 1201-1223.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部