摘要
提出了关于Bézier曲面的一种降阶逼近方法.对于Bézier曲面的控制顶点进行分割,在不同方向上的伯恩斯坦基函数分别用低阶S幂基函数表示,由曲面的定义得到分段的张量积降阶逼近曲面.最后进行数值实例的比较,该逼近方法有效.
A method for degree reduction approximating Bézier surfaces is presented.For the control vertices of Bézier surface which is made subdivision,then S-power basis function of lower degree is used to represente the different direction of Bernstein basis function, after degree reduction approximation on a segment of the tensor product Bézier surfaces based on defining surfaces is obtained.Finally the method of approximation is effective by comparison of numerical examples.
出处
《内蒙古民族大学学报(自然科学版)》
2014年第4期390-392,共3页
Journal of Inner Mongolia Minzu University:Natural Sciences
基金
内蒙古自治区自然科学基金资助项目(2013MS0910)
关键词
曲面
S幂基
最佳逼近
Surfaces
S-power basis
Optimal approximation