期刊文献+

混合逆狄利克雷分布的变分学习及应用 被引量:1

Variational Learning for Finite Inverted Dirichlet Mixture Models and Applications
下载PDF
导出
摘要 混合逆狄利克雷分布是正的非高斯数据分析中一个重要的统计模型.但是利用常用的统计方法比如极大近似然估计、矩估计等往往很难得到模型参数估计的显性解析式.本文提出一个变分贝叶斯学习算法,它能够在估计参数的同时自动确定混合分量数.在合成数据集及实测数据集上的实验结果表明利用变分贝叶斯推理来估计混合逆狄利克雷分布是一种非常有效的方法. Finite inverted Dirichlet mixture models play an important part in positive non-Gaussian data analysis. However, it is always different to obtain the analytical solutions to model parameters by using conventional approaches such as maximization likelihood estimation and moment estimation. In this paper, we have proposed a variational inference framework. Within this frame- work, pm"mneter estimation and automatic model selection can be carried out simulta-neously. Experimental results on synthetic and real-world data sets demonslrate the effectiveness and the merits of the proposed approach.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第7期1435-1440,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61121061 No.60972077 No.61072079 No.61303232 No.61363085) 教育部博士点基金(No.20120005110017) 国家863高技术研究发展计划(No.2009AA01AZ430)
关键词 逆狄利克雷分布 贝叶斯估计 变分推理 拓展分解变分近似 模型选择 inverted Dirichlet distribution Bayesian estimation variational inference extended factorized variational approximation model selection
  • 相关文献

参考文献14

  • 1左国玉,刘文举,阮晓钢.声音转换技术的研究与进展[J].电子学报,2004,32(7):1165-1172. 被引量:32
  • 2梁岩,鲍长春,夏丙寅,何玉文,周璇,李娜.基于高斯混合模型的压缩域语音增强方法[J].电子学报,2012,40(10):2031-2038. 被引量:9
  • 3刘立芳,霍红卫,王宝树.生物序列模体的混合Gibbs抽样识别算法[J].电子学报,2008,36(4):750-755. 被引量:2
  • 4Bdiri T,Bouguila N.Positive vectors clustering using interted Dirichlet finite mixture Models [J].Expert Systems with Applications,2012,39(2):1869-1882.
  • 5Bouguila N,ElGuebaly W.Discrete data clustering using finite mixture models[J].Pattern Recognition,2009,42(1):33-42.
  • 6Ma Z Y,Leijon A.Bayesian estimation of beta mixture models with variational inference [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(33):2160-2173.
  • 7Fan W T,Bouguila,Ziou N.Variaional learning for finite Dirichlet mixture models and applications [J].IEEE Transaction on Neural Networks and Learning Systems,2012,23(5):762-774.
  • 8Bouguila N.Hybrid Generative/discriminative approaches for proportional data modeling and classification[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(12):2184-2202.
  • 9刘伟峰,杨爱兰.基于BIC准则和Gibbs采样的有限混合模型无监督学习算法[J].电子学报,2011,39(A03):134-139. 被引量:24
  • 10Corduneanu A,Bishop C.Variational Bayesian model selection for mixture distributions[A].Proceeding of the 8th International Conference on Artificial Intelligece and Statistics[C].USA:IEEE,2001.27-34.

二级参考文献100

  • 1熊刚,赵惠昌,王李军.海杂波背景下雷达引信的相关检测方法研究[J].电子学报,2004,32(12):1937-1940. 被引量:5
  • 2McLachlan G, Peel D. Finite Mixture Models[ M]. New York: John Wiley Sons,2000.
  • 3W K Hastings. Monto Carlo sampling methods using Markov chains and their Applications [ J]. Biometrika, 1970, 57 (1):97 - 109.
  • 4A P Dempster NML,D B Rubin.Maximum likelihood from Incomplete Data via the EM algorithm[ J ]. Journal of the Royal statistical Society, Series B, 1977,39( 1 ) : 1 - 28.
  • 5Constantinos Constantinopoulos, Michalis K. Titsias, and Aristidis Likas, Bayesian Feature and Model Selection for Gaussian Mixture Models[ J] .WEE Transactions of Pattern Analysis and Machine Intelligence, 2006,6 (28) : 1013 - 1018.
  • 6Nizar Bouguila, Djemel Ziou. A Hybrid Sem Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture [ J ]. IEEE Transactions on Image Processing, 2006,15 ( 9 ) : 2657 - 2668.
  • 7Mario A T Figueiredo, Anil K. Jain. Unsupervised Learning of Finite Mixture Models [ J]. IEEE Transactions of Pattern Analysis and Machine Intelligence,2002,3(24) :381 - 396.
  • 8Bouguila N, Ziou D. High-dimensional unsupervised selection and estimation of a finite generalized dirichlet mixture model based on minimum message length [ J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2007,29(10) : 1716 - 1731.
  • 9Pemkopf F, Bouchaffra D. Genetic-based EM algorithm for learning Gaussian mixture models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (8) : 1344 - 1348.
  • 10Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[ J ]. Biometrika, 1995,82(4) : 711 - 732.

共引文献63

同被引文献1

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部