摘要
大种群交互式遗传算法中,评价个体数目的增多加重了用户疲劳,限制了该方法的应用.本文提出一种基于精英集的进化个体选择方法,首先,基于用户评价较高的个体形成精英集;然后,选择与精英集相似的个体类别,在无需用户评价和适应值估计的情况下,直接用于遗传操作;最后,根据种群的进化阶段和个体对精英集的贡献,更新精英集.将其应用于窗帘进化设计系统中,并与已有典型方法比较.结果表明,该方法在提高种群搜索性能的同时,能够有效减轻用户疲劳.
In interactive genetic algorithms with a large population, the increase of evaluated individual aggravates user fa- tigne, which restricts the applications of these algorithms. In this study, a method of selecting individuals using the elite set was pre- sented. The elite set is first formed based on individuals with high user's evaluations; and then,individual categories similar with the elite set are selected to perform genetic operations with neither user's evaluations nor fitness estimations; final/y, the elite set is up- dated according to evolutionary stages and individuals' contributions to the elite set. The proposed algorithm was applied to a curtain evolutionary design system, and compared with existing typical ones. The experimental results confirmed that the proposed algorithm has advantages in alleviating user fatigue while improving its efficiency in exploration.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第8期1538-1544,共7页
Acta Electronica Sinica
基金
江苏省自然科学基金(No.BK2010186)
关键词
交互式遗传算法
定性性能指标优化
精英集
进化个体
熵
interactive genetic algorithm
qualitative index optimization
elite set
individual
entropy