期刊文献+

基于精英集选择进化个体的交互式遗传算法 被引量:12

Interactive Genetic Algorithms with Selecting Individuals Using Elite Set
下载PDF
导出
摘要 大种群交互式遗传算法中,评价个体数目的增多加重了用户疲劳,限制了该方法的应用.本文提出一种基于精英集的进化个体选择方法,首先,基于用户评价较高的个体形成精英集;然后,选择与精英集相似的个体类别,在无需用户评价和适应值估计的情况下,直接用于遗传操作;最后,根据种群的进化阶段和个体对精英集的贡献,更新精英集.将其应用于窗帘进化设计系统中,并与已有典型方法比较.结果表明,该方法在提高种群搜索性能的同时,能够有效减轻用户疲劳. In interactive genetic algorithms with a large population, the increase of evaluated individual aggravates user fa- tigne, which restricts the applications of these algorithms. In this study, a method of selecting individuals using the elite set was pre- sented. The elite set is first formed based on individuals with high user's evaluations; and then,individual categories similar with the elite set are selected to perform genetic operations with neither user's evaluations nor fitness estimations; final/y, the elite set is up- dated according to evolutionary stages and individuals' contributions to the elite set. The proposed algorithm was applied to a curtain evolutionary design system, and compared with existing typical ones. The experimental results confirmed that the proposed algorithm has advantages in alleviating user fatigue while improving its efficiency in exploration.
作者 巩敦卫 陈健
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1538-1544,共7页 Acta Electronica Sinica
基金 江苏省自然科学基金(No.BK2010186)
关键词 交互式遗传算法 定性性能指标优化 精英集 进化个体 interactive genetic algorithm qualitative index optimization elite set individual entropy
  • 相关文献

参考文献18

  • 1Formiga L,Alias F.Extracting user preferences by GTM for AiGA weight tuning in unit selection text-to-speech synthesis[J].Lecture Notes in Computer Science,2007,4507:654-661.
  • 2Aoki K,Takagi H.3-D CG Lighting with an interactive GA[A].Proceeding of 1st International Conference on Conventional and Knowledge-Based Intelligent Electronic Systems[C].USA:IEEE,1997.296-301.
  • 3Wannarumon S,Bohez E L J,Annanon K.Aesthetic evolutionary algorithm for fractal-based user-centered jewelry design[J].Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2008,22(1):19-39.
  • 4Cook T E.Generating art using genetic algorithms and user input naturally[A].Proceeding of Genetic and Evolutionary Computation Conference[C].Montreal,Québec,Canada:ACM,2007.2647-2650.
  • 5Suga Y,Ikuma Y,Ogata T.Interactive evolution of human robot communication in real world[A].Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and System[C].USA:IEEE,2005,8.1438-1443.
  • 6Gong D W,Yuan J,Ma X P.Interactive genetic algorithm with large population size[A].Proceedings of IEEE Congress on Evolutionary Computation[C].USA:IEEE,2008,6.1678-1685.
  • 7巩敦卫,陈健,孙晓燕.新的基于相似度估计个体适应值的交互式遗传算法[J].控制理论与应用,2013,30(5):558-566. 被引量:13
  • 8Biles J A,Anderson P G,Loggi L W.Neural network fitness functions for a musical IGA[A].Proceedings of International Symposium on Intelligent Industrial Automation and Soft Computing[C].USA:IEEE,1996.39-44.
  • 9Guo Y N,Cheng J,Lin Y.Cooperative interactive cultural algorithms adopting knowledge migration[A].Proceedings of World Summit on Genetic and Evolutionary Computation[C].Shanghai,China:ACM,2009.193-199.
  • 10Jin Y C,Olhofer M,Sendhoff B.On evolutionary optimization with approximate fitness functions[A].Proceedings of Genetic and Evolutionary Computation Congress[C].USA:IEEE,2000.786-793.

二级参考文献61

共引文献67

同被引文献67

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部