期刊文献+

基于灰色Verhulst模型的音频频带扩展方法

Audio Bandwidth Extension Method Based on Grey Verhulst Model
下载PDF
导出
摘要 受到传输带宽的限制,宽带音频的自然度和听觉质量会有所下降,因此,本文提出了一种基于灰色Verhulst模型的宽带向超宽带音频频带扩展方法.根据音频信号频谱包络序列的演变趋势,采用灰色Verhulst模型对高频频谱包络进行估计,并利用最近邻匹配方法对高频频谱细节进行预测,最后经过高频频谱包络的调整,所提方法能够有效地恢复7~14kHz频率范围内的高频成分.主客观测试表明,该方法改善了宽带音频的听觉质量,并且优于传统的基于高斯混合模型的音频频带扩展方法. The naturalness and auditory quality of the wideband audio is generally degraded due to the limitation of transmis- sion bandwidth, so this paper presents a kind of audio bandwidth extension method from the wideband to super wideband based on grey Verhulst model. Grey Verhulst model was utilized for estimating the envelope of high-frequency spectrum, according to the evolution tendency of the spectral envelope series of audio signals. In addition, nearest-neighbor matching was utilized to predict the fine structure of high-frequency components. At last, the proposed method can effectively recover the high-frequency components in the frequency range 7-14 kHz through the envelope adjusanent of high-frequency spectrum. Subjective and objective testing results indicate that the proposed method can improve the auditory quality of the wideband audio and outperforms the conventional method of audio bandwidth extension based on Gaussian mixture model.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1624-1629,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61072089)
关键词 音频编码 频带扩展 灰色VERHULST模型 最近邻匹配 audio coding bandwidth extension grey Verhulst model nearest-neighbor matching
  • 相关文献

参考文献18

  • 1ITU-T G.722.1 Annex C,Low complexity coding at 24 and 32kb/s for hands-free operation in systems with low frame loss Annex C 14kHz mode at 24,32 and 48kb/s[S].
  • 2Vary P,Martin R.Digital Speech Transmission-Enhancement,Coding and Error Concealment[M].UK:John Wiley & Sons Ltd,2006.
  • 3Chig-Min Liu,Wen-Chieh Lee,Han-Wen Hsu.High frequency reconstruction for band-limited audio signals[A].Proceeding of 6th Conference on Digital Audio Effects[C].London,UK:IEEE Press,2003.1-6.
  • 4Soon I Y,Yeo C K.Bandwidth extension of narrowband speech using soft-decision vector quantization[A].Proceeding of 5th International Conference on Information Communications and Signal Processing[C].Bangkok,Thailand:IEEE Press,2005.734-738.
  • 5Liu Xin,Bao Changchun,Jia Maoshen,Sha Yongtao.A harmonic bandwidth extension based on Gaussian mixture model[A].Proceeding of 10th International Conference on Signal Processing (ICSP2010)[C].Beijing:IEEE Press,2010.474-477.
  • 6Pulakka H,Remes U,Yrttiaho S,et al.Bandwidth extension of telephone speech to low frequencies using sinusoidal synthesis anda Gaussian mixture model[J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(8):2219-2231.
  • 7Nilsson M,Gustafsson H,Andersen S V,Kleijn W B.Gaussian mixture model based mutual information estimation between frequency bands in speech[A].Processing of the IEEE International Conference on Acoustics,Speech,and Signal Processing[C].Orlando,USA:IEEE Press,2002.I-525-528.
  • 8Nour-Eldin A H,Kabal P.Memory-based approximation of the Gaussian mixture model framework for bandwidth extension of narrowband speech[A].Processing of Interspeech 2011[C].Florence,Italy:ISCA Press,2011.1185-1188.
  • 9Ya(g)li C,Turan T T,Erzin E.Artificial bandwidth extension of spectral envelope along a Viterbi path[J].Speech Communication,2013,55(1):111-118.
  • 10Song G B,Martynovich P.A study of HMM-based bandwidth extension of speech signals[J].Signal Processing,2009,89(10):2036-2044.

二级参考文献11

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部