期刊文献+

Stability Analysis of Robust Arbitrage in a Random Interval Valued Financial Market 被引量:1

Stability Analysis of Robust Arbitrage in a Random Interval Valued Financial Market
下载PDF
导出
摘要 Stability of robust arbitrage under different probability measures is discussed in a random interval valued financial market.In a fundamental financial market without robust arbitrages, a suitable condition is given to guarantee that the market with new probability measures will also have no robust arbitrage. In order to specify the result got in this article,an example of binomial tree financial model with interval ratios of change is proposed. Stability of robust arbitrage under different probability measures is discussed in a random interval valued financial market.In a fundamental financial market without robust arbitrages, a suitable condition is given to guarantee that the market with new probability measures will also have no robust arbitrage. In order to specify the result got in this article,an example of binomial tree financial model with interval ratios of change is proposed.
作者 尤苏蓉 瞿哲
出处 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期339-342,共4页 东华大学学报(英文版)
基金 the Fundamental Research Funds for the Central Universities,China
关键词 random interval robust arbitrage stability analysis random interval robust arbitrage stability analysis
  • 相关文献

参考文献9

  • 1FollmerH,Schied A.Stochastic Finance:an Introduction in Discrete Time[M].2nd ed.Berlin:Walter de Gruyter,2004.
  • 2Rigotti L,Shannon C.Uncertainty and Risk in Financial Markets[J].Econometrica,2005,73(1):203-243.
  • 3Ostrovski V.Stability of No-Arbitrage Property under Model Uncertainty[J].Statistics and Probability Letters,2013,83 (1):89-92.
  • 4Miranda E,Couso I,Gil P.A Random Set Characterisation of Possibility Measures[J].Information Science,2004,168 (1/2/ 3/4):51-75.
  • 5Molchanov I.Theory of Random Rets[M].2nd ed.London:Springer,2005.
  • 6Miranda E,Couso I,Gil P.Random Intervals as a Model for Imprecise Information[J].Fuzzy Sets and Systems,2005,154(2):386-412.
  • 7You S R.Pricing and Hedging in a Single Period Market with Random Interval Valued Assets[J].International Journal of Approximate Reasoning,2013,54(9):1310-1321.
  • 8Surhone L,Timpledon M,Marseken S.Total Variation Distance of Probability Measures[M].Germany:VDM Publishing,2010.
  • 9Billingsley P.Convergence of Probability Measures[M].New York:Wiley,1999.

同被引文献19

  • 1Goldman M B,Sosin H B,Gatto M A.Path Dependent Options[J].Journal of Finance,1979,34(5):1111-1128.
  • 2Rubinstein M,Reiner E.Breaking down the Barriers[J].Risk,1991,4(8):28-35.
  • 3Rubinstein M.On the Relation between Binomial and Trinomial Option Pricing Models[J].Journal of Derivatives,2000,8(2):47-50.
  • 4Ndogmo J C,Ntwiga D B.High-Order Accurate Implicit Methods for Barrier Option Pricing[J].Applied Mathematics and Computation,2011,218(5):2210-2224.
  • 5Ballestra L V,Pacelli G.A Very Fast and Accurate Boundary Element Method for Options with Moving Barrier and TimeDependent Rebate[J].Applied Numerical Mathematics,2014,77(3):1-15.
  • 6Rich D R.The Mathematical Foundations of Barrier Option Pricing Theory[J].Advances in Futures and Options Research,1994,7(2):267-312.
  • 7Rapisarda F.Barrier Options on Underlying with Time-Dependent Parameters:A Perturbation Expansion Approach[EB/OL].(2005-03-09)[2015-03-23].http://papers.ssrn.com/sol3/papers.cfm?abstract_id=682184.
  • 8Broadie M,Glasserman P,Kou S.A Continuity Correction for Discrete Barrier Options[J].Mathematical Finance,1997,7(4):325-349.
  • 9Hyong-Chol O.The Pricing of a Moving Barrier Option[EB/OL].[2004-03-25](2015-03-23).http://papers.ssrn.com/sol3/papers.cfm?abstract_id=742924.
  • 10Bernard C,Olivier L C,Quittard-Pinon F.Pricing Derivatives with Barriers in a Stochastic Interest Rate Environment[J].Journal of Economic Dynamics&Control,2008,32(9):2903-2938.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部