期刊文献+

基于支持向量机的化工装置电力电子故障诊断

Based on support vector machine for power electronic fault diagnose of chemical plants
下载PDF
导出
摘要 采用小波包分析与支持向量机(SVM)对化工装置电力电子故障进行自动识别和诊断,运用变尺度分辨小波包方法对电力电子故障信号进行特征处理。支持向量机能够对小样本数进行模式识别,并且具有良好的分类推广能力。在小波包分析特征基础上,采用分布式多支持向量机(SVM)分类器识别化工装置电力电子故障。结果表明:该方法能准确有效地对化工装置的电力电子故障进行识别和诊断。 The combination of wavelet packet analysis and support vector machine is introduced to solve automatic detection of power e- lectronic fault diagnose. Wavelet packet analysis which holds multi-resolution and multi-scale is introduced to deal with the signal characteris- tics. Support vector machine can carry through the pattern recognition on the small-samples and has well generalized ability. Based on wavelet packet analysis for signal characteristics, the distributed muhi-SVM classifier is utilized to identify the power electronic fault diagnose, the experimental results also show that this method can efficiently identify and diagnose the power electronic fault diagnose of chemical units.
作者 胡双俊
出处 《化学工业与工程技术》 CAS 2014年第4期79-82,共4页 Journal of Chemical Industry & Engineering
关键词 支持向量机 小波包变换电力电子故障诊断 support vector machine wavelet packet analysis power electronic fault diagnose
  • 相关文献

参考文献7

  • 1MODELL D,DONNALD J.Data acquisition and wheel inspection methodologies using eddy current sensors[C]//Instrumentation in the Aerospace Industry:Proceedings of the Insternational Symposition,1994.
  • 2PLATT M.Sequential minimal optimization:a fast algorithm for training support vector machine.In:Advances in Kernel Methods-Support VectorLearing.Cambridge[M].MA:MIT Press,1999.
  • 3NELLO C,JOHN S T.An introduction to support vector machine and other kernel—based learing methods[M].Cambridge:Cambridge University Press,2000.
  • 4VAPNIK V N.The Nature of Statistical Learning Theory[M].Springer; NewYork,1998.
  • 5徐得鸿,马皓.电力电子装置故障自动诊断[M].北京:科学出版社,2001.
  • 6王雪,付振波.采用小波分析与支持向量机的车轮踏面擦伤识别方法[J].中国机械工程,2004,15(18):1641-1643. 被引量:8
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276

二级参考文献5

  • 1Modell D, Donald J. Data Acquisition and Wheel Inspection Methodologies Using Eddy Current Sensors. Instrumentation in the Aerospace Industry: Proceedings of the International Symposium, 1994
  • 2Platt M. Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. In: Advances in Kernel Methods-Support Vector learning. Cambridge, MA: MIT Press,1999
  • 3Nello C, John S T. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge: Cambridge University Press, 2000
  • 4卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276

共引文献2278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部