期刊文献+

谷物联合收获机喂入量神经网络模型建立

The Research Situation of Monitoring and Controlling System of Combine Harvester
下载PDF
导出
摘要 考虑物料的物理特性,对喂入量理论方程进行分析,利用正交试验获得喂入量的主要影响因素,建立了喂入量BP神经网络模型。该模型输入参数为物料湿度、油压力、谷草比,输出参数为喂入量。仿真试验结果表明:训练样本、确证样本和测试样本网络输出与网络目标的误差较小,相关系数可达0.999 5,模型可以准确地反映喂入量。用未参加训练的10组样本进行喂入量测定,网络模型的误差平方和为0.769 2,远小于回归方程的误差平方和2.656 2,可见网络模型优于回归方程。 Considering the physical characteristics of crops, the feed rate theory equation was analyzed in this paper. The main influence factors of feed rate had been get through orthogonal test, and then a feed rate BP networks model was modeled, whose input parameters are crop moisture content, oil pressure and grain-straw ratio, and output parameter is feed rate. The simulation test results show, the output error of training samples, validating samples and testing samples were small. The R-square of regression function between output and target of networks model for testing samples is 0. 999 5, so this model can accurately reflect the feed rate. The trained networks model was applied to measure the feed rate of ten samples, which had not been used to establish the networks model, the sum squared error of the networks model is 0. 769 2, better than the sum squared error of regression function, which is 2. 656 2.
出处 《农机化研究》 北大核心 2014年第10期12-16,共5页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(61004085) 中央国有资本经营预算重大技术创新及产业化资金项目(2011) 河南省科技攻关项目(122102210545)
关键词 谷物 联合收获机 BP神经网络 喂入量 grain combine harvester BP networks model feed rate
  • 相关文献

参考文献6

二级参考文献23

  • 1李国栋,韩金仓,桑正中.联合收割机脱粒滚筒恒速智能控制器设计[J].控制工程,2007,14(2):154-156. 被引量:15
  • 2李杰,阎楚良,杨方飞.纵向轴流脱粒装置的理论模型与仿真[J].江苏大学学报(自然科学版),2006,27(4):299-302. 被引量:30
  • 3张认成,博士学位论文,1998年
  • 4赵匀,农业机械学报,1984年,4期,34页
  • 5袁佳平(译),农业机械的设计和计算,1983年,547页
  • 6曹崇文(译),收获机械,1982年,435页
  • 7Mackay D J C.Bayesian interpolation.Neural Computation,1992,4(3):415~447
  • 8Foresee F D,Hagan M T.Gauss-Newton approximation to bayesian regularization.In:Proceedings of the 1997 International Joint Conference on Neural Networks,Houston,Texas,1997.1930~1935
  • 9Lu Y W,Sundararajan N,Saratchandran P.A sequential learning scheme for function approximation using minimal radial basis function neural networks.Neural Computation,1997,9(3):461~478
  • 10Taylor R K, Hohhy H M, Schrock M D. Evaluation of an automatic feedrate control system for a grain combine[C]. ASAE Paper 051143, 2005.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部