期刊文献+

植物叶片本征维数估计与分类方法研究——基于改进PCA

Intrinsic Dimension Estimation and Classification of Leaves——Based on Improved PCA Method
下载PDF
导出
摘要 针对现有PCA方法在大数据降维过程中数据处理速度过慢这一问题,设计并实现了一种基于曲线拟合技术的方差贡献率函数拟合方法,并将其应用于植物叶片的本征维数估计之中。为了提高本征维数估计的精度,提出了一种"粗略估计本征维数区间+精确判断"相结合的本征维数估计方法。为了验证算法的有效性,利用5类植物叶片共计150个样本进行了识别测试。试验结果表明,文中方法可以得到与PCA方法相近的分类效果,但识别时间要远小于PCA方法,表明将该方法应用于高维数据集的本征维数估计是有效的、可行的。 Common used PCA method has the disadvantage of low speed in the processing of high dimensionality reduction areas. In order to solve the problem, an improved PCA method based on curve fitting algorithm of variance contribution data is presented and it is used in the classification of leaves. In order to promote the precision of intrinsic dimension estimation, an algorithm named "rough estimation of di.oension range and accurate measurement" combined method is used in this paper. To testify the performance of the pre^ented method in this paper, 5 kinds of leaves such as Ginkgo leaves, Ligustrun lucidum leaves, Acer monoes leaves, ~VT'nter sweet leaves and Diospyros lotus leaves are used in this experiment and the total sample number is 150. Experim, ~1 results show that the proposed method could get similar classification result while the time of recognition is much ~, ".. iler than the common used PCA method, which shows that the proposed method is effective and feasible in the use of high dimensionality reduction.
出处 《农机化研究》 北大核心 2014年第10期42-45,49,共5页 Journal of Agricultural Mechanization Research
基金 国家"863计划"项目(2013AA10230402) 国家自然科学基金项目(31000670) 中央高校基本科研业务经费项目(QN2011031) 国家大学生创新性实验计划项目(2012)
关键词 植物叶片 本征维数估计 PCA 方差贡献率 曲线拟合 plant leaves intrinsic dimension estimation PCA variance contribution curve fitting
  • 相关文献

参考文献10

二级参考文献93

  • 1傅星,卢汉清,罗曼丽,曹伟,于兴华.应用计算机进行植物自动分类的初步研究[J].生态学杂志,1994,13(2):69-71. 被引量:8
  • 2王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 3程星晶 傅家祥.对人脸识别中Fisher线性判别的改进方法.电脑知识与技术,2008,9(27):2054-2055.
  • 4Ray T S. Landmark eigenshape analysis: homologous contours: leaf shape in Syngonium (Araceae) [J]. Am J Bot, 1992, 79(1): 69-76.
  • 5Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input[J]. Comput Electron Agric, 2000, 29(1/2): 59-72.
  • 6Timmermans A J M, Hulzebosch A A. Computer vision system for on-line sorting of pot plants using an artificial neural network classifier[J]. Comput Electron Agric, 1996, 15(1):41-55.
  • 7Yonekawa S, Sakai N, Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by image analysis[J]. Trans of the ASAE, 1996, 39(4): 1525- 1533.
  • 8Abbasi S, Mokhtarian F, Kittler J. Reliable classification of chrysanthemum leaves through curvature scale space[J]. Lecture Notes in Computer Science, 1997, (1252): 284-295.
  • 9Mokhtarian F, Abbasi S. Matching shapes with self-intersection: application to leaf classification[J]. IEEE Trans on Image Processing, 2004, 13(5): 653-661.
  • 10Li Y, Zhu Q, Cao Y, Wang C. A Leaf Vein Extraction Method Based On Snakes Technique[C]//Proceedings of IEEE International Conference on Neural Networks and Brain, Beijing, 2005: 885-888.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部