期刊文献+

自构建小波神经网络的内模控制研究与应用

Research and Application of Internal Model Control Based on Self-built Wavelet Neural Network
下载PDF
导出
摘要 考虑到小波神经网络隐含层神经元的数目决定了整个网络的规模和性能,根据小波基函数的激励强度和衰减程度可以添加或者删除小波神经网络隐含层神经元,优化了小波神经网络隐含层结构,采用自构建小波神经网络辨识内模控制系统的正模型和逆模型,该模型的神经网络结构可根据性能要求动态调整,从而改进了神经网络内模控制技术,实验结果表明,提出的控制方法比传统方法在鲁棒性和抗扰性方面具有更好的性能表现,各项指标均优于传统控制方法.实现氧化铝熟料烧结工艺优化。 Considering neurons number in the hidden layer of wavelet neural network determines the size and performance of the entire network, this paper use the excitation intensity and attenuation degree of wavelet function to add or delete the hidden layer neurons of wavelet neural network. Thus the structure of wavelet neural network hidden layer is optimized, the forward model and inverse model of internal model control system is identified by the self-built wavelet neural network, whose neural network structure can be dynamically adjusted based on performance requirements. Experimental results show that the proposed control method has better performance than traditional control methods in aspects of robustness and immunity because each algorithm index is better than traditional control method. Hence optimization of clinker sintering process is achieved.
作者 王华秋 王斌
出处 《计算机测量与控制》 北大核心 2014年第9期2805-2809,共5页 Computer Measurement &Control
基金 重庆市教委科学技术研究项目(KJ100805)
关键词 熟料烧结 自构建小波神经网络 内模控制 系统辨识 clinker sintering self--built wavelet neural network internal model control system identification
  • 相关文献

参考文献11

二级参考文献36

  • 1陈奎生,易建钢,黄浩,刘光临.气动位置伺服系统的NN-IMC控制研究[J].中国机械工程,2004,15(23):2138-2142. 被引量:9
  • 2戴先中.多变量非线性控制的神经网络逆控制方法[M].北京:科学出版社,2005.17-22.
  • 3Hunt K J, Sbarbaro D et al. Neural networks for control system-a survey. Automation, 1992, 28 : 1083 - 1112.
  • 4Nguyen D H, Windrow B. Neural networks for selflearning control systems. IEEE Contr. Syst. Mag. , 1990, 10(2) : 18 - 23.
  • 5Zhang Qinghua, Albert Benveniste. Wavelet networks [ J ]. IEEE Trans. on Neural Networks, 1992, 3(6) :889 - 898.
  • 6Stephanopoulos G, Huang H P. The 2 - Port Control System [J], Chem. Engin. Science, 1986, 41 (6) : 1611 - 1630.
  • 7[2]SUTINEN R. Causticizing plant and lime kiln computer control [J]. Pulp and Paper, 1981, 82 ( 8 ): 90-95.
  • 8[3]STEPHEN E Sheridan, POUL Skjoth. Automatic kiln control at oregon portland cement company's durkee plant utilizing fuzzy logic [J]. IEEE Transactions on industry application, 1984,IA 20(3):562-568.
  • 9[4]MAYNARD B Hall. Kiln stabilization and control - A COMDALE/C expert system approach [C]//. Proceedings on IEEE Cement Industry Technical Conference, Toronto, Canada, 1993:201-218.
  • 10[5]JARVENSIVU M, SAARI K, S. -L. Jamsa-Jounela .Intelligent control system of an industrial lime kiln process [J]. Control Engineering Practice, 2001,9: 589-606.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部