期刊文献+

基于OMP算法的图像重构研究与FPGA实现 被引量:4

Study of Image Reconstruction Based on OMP Algorithm and FPGA Implementation
下载PDF
导出
摘要 针对高分辨率的图像在采集过程中存在数据量较大的问题,提出了一种基于正交匹配追踪(OMP)算法的图像重构方法,设计了OMP算法的硬件结构,并在FPGA平台上进行了仿真验证;首先,研究了压缩感知算法的基本原理;然后,分别基于匹配追踪算法(MP)和正交匹配追踪算法实现了图像的重构;最后,通过仿真对比分析了这两种方法的图像重构结果,OMP算法误差在10^(-15)量级,明显优于MP算法的10^(3)误差量级,并且OMP算法的迭代收敛性也优于MP算法。 For the high-resolution image need a large quantity of data in an acquisition process, a method based on orthogonal matching pursuit (OMP) algorithm for image reconstruction has been proposed and verified through the FPGA platform. Firstly, the basic principle of compressed sensing algorithm has been studied. Secondly, the image reconstruction can be realized based on the matching pursuit algorithm (MP) and orthogonal matching pursuit algorithm respectively. Lastly, compared with the simulation results of image reconstruction based on the above two methods, show that the OMP algorithm is superior to MP algorithm not only at the convergence but also the reconstruction effect.
出处 《计算机测量与控制》 北大核心 2014年第9期2944-2946,共3页 Computer Measurement &Control
基金 国家自然科学基金(60974146) 航空科学基金(20100753009)
关键词 图像 正交匹配追踪算法 FPGA 压缩感知算法 重构 image orthogonal matching pursuit FPGA compressed sensing algorithm reconstruction
  • 相关文献

参考文献10

  • 1Donoho D L, Compressed sensing [J]. IEEE Transactions on Infor-mation Theory, 2006, 52 (4) : 1289 - 1306.
  • 2Candes E. Romberg J,Tao T. Robust uncertainty principles: Exactsignal reconstruction from highly incomplete frequency information[J], IEEE Transactions on Information Theory. 2006,52 C 2):489 - 509.
  • 3Candes E. Compressive sampling [A], In: Proceedings of Inter-national Congress of Mathematicians [C]. Zurich. Switzerland:European Mathematical Society Publishing House, 2006. 143.3-1452.
  • 4Baraniuk R. Compressive sensing [J]. IEEE Signal ProcessingMagazine, 2007,24 (4): 118-121.
  • 5A Bruck stein, D Donoho, M Elad. From sparse solutions of sys-tems of equations to sparse modeling of signals and images [J]. SI-AM Review, 2009,51 (1): 34-81.
  • 6J Tropp and S Wright. Computational methods for sparse solution oflinear inverse problems [R]. Caltech ACM Technical Report,Jan. 2009.
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 8金坚,谷源涛,梅顺良.压缩采样技术及其应用[J].电子与信息学报,2010,32(2):470-475. 被引量:78
  • 9S Mallat and Zhang. Matching pursuit with time- frequency diction-aries [J]. IEEE Transactions on Signal Processing, 1993,41(12): 3397 - 3415.
  • 10Tropp J,Gilbert A. Signal recovery from random measurementsvia orthogonal matching pursuit [J]. Transactions on InformationTheory, 2007, 53 (12): 4655 -4666.

二级参考文献118

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献761

同被引文献18

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部