期刊文献+

大数据背景下运营商发展策略探讨 被引量:2

下载PDF
导出
摘要 随着互联网业务和应用的迅猛发展以及移动互联网的爆炸式增长,大数据技术的出现与发展为电信运营商深挖数据提供了新的技术手段,同时也为其更好地服务客户提供了新的机遇。大数据将成为运营商开展移动互联网业务的核心优势资产。本文结合大数据的技术现状以及运营商的的数据特点,分析运营商在大数据应用方面的优势,并提出了运营商的数据获取原则以及策略。
作者 夏晓文
出处 《中国新通信》 2014年第19期32-33,共2页 China New Telecommunications
  • 相关文献

参考文献6

  • 1童晓渝,张云勇,房秉毅,李素粉.电信运营商实施云计算的策略建议[J].信息通信技术,2012,6(1):34-38. 被引量:11
  • 2White Tom.Hadoop: the Definitive Guide. O' Reilly Media, p.3.ISBN978-1-4493-3877-0, 2012.
  • 3Cerra A, Easterwood K, Power J. Transforming Business-BigData, Mobility, and Globalization. Wiley, UK, 2012.
  • 4郭志懋,周傲英.数据质量和数据清洗研究综述[J].软件学报,2002,13(11):2076-2082. 被引量:268
  • 5Mahdi Bohlouli, Frank Schulz, Lefteris Angelis, David Pahor, lvona Brandic, David Atlan, and Rosemary Tate Towardsan Integrated Platform for Big Data Analysis, Springer2013.
  • 6Gershman S ,Blei D.A tutorial on Bayesian nonarametric models.Journal of Mathematical Psychology,2012,56(1):1-12.

二级参考文献28

  • 1Aebi, D., Perrochon, L. Towards improving data quality. In: Sarda, N.L., ed. Proceedings of the International Conference on Information Systems and Management of Data. Delhi, 1993. 273~281.
  • 2Wang, R.Y., Kon, H.B., Madnick, S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference on Data Engineering. Vienna: IEEE Computer Society, 1993. 670~677.
  • 3Rahm, E., Do, H.H. Data cleaning: problems and current approaches. IEEE Data Engineering Bulletin, 2000,23(4):3~13.
  • 4Galhardas, H., Florescu, D., Shasha, D., et al. AJAX: an extensible data cleaning tool. In: Chen, W.D., Naughton, J.F., Bernstein, P.A., eds. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000. 590.
  • 5Hernandez, M.A., Stolfo, S.J. Real-World data is dirty: data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 1998,2(1):9~37.
  • 6Lee, M.L., Ling, T.W., Lu, H.J., et al. Cleansing data for mining and warehousing. In: Bench-Capon, T., Soda, G., Tjoa, A.M., eds. Database and Expert Systems Applications. Florence: Springer, 1999. 751~760.
  • 7Monge, A.E. Matching algorithm within a duplicate detection system. IEEE Data Engineering Bulletin, 2000,23(4):14~20.
  • 8Monge, A.E., Elkan, C. The field matching problem: algorithms and applications. In: Simoudis, E., Han, J.W., Fayyad, U., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Oregon: AAAI Press, 1996. 267~270.
  • 9Savasere, A., Omiecinski, E., Navathe, S.B. An efficient algorithm for mining association rules in large databases. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 432~444.
  • 10Srikant, R., Agrawal, R. Mining Generalized Association Rules. In: Dayal, U., Gray, P., Nishio, S., eds. Proceedings of the 21st International Conference on Very Large Data Bases. Zurich: Morgan Kaufmann, 1995. 407~419.

共引文献277

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部