期刊文献+

认知无线网络中基于隐马尔可夫预测的P-CSMA协议 被引量:3

P-CSMA Protocol Based on Hidden Markov Prediction in Cognitive Radio Networks
下载PDF
导出
摘要 针对非对称信息环境下的无线资源竞争问题,提出一种基于隐马尔可夫预测的P-CSMA协议,该协议中采用随着竞争信道的非授权用户数变化而改变的动态接入概率。非授权用户通过隐马尔可夫预测模型来判断博弈的对手是否参与信道竞争,提升了博弈的信息准确度,使得非授权用户能在非对称信息环境下选择最佳的接入概率以最大化自身效用。仿真表明,相比其他协议,基于隐马尔可夫预测的P-CSMA协议能够较好地提升系统的信道利用率。 To solve the wireless resource competition issues in an asymmetric information environment, a p-persistent CSMA protocol based on hid- den Markov prediction is proposed. In this protocol, the dynamic access probability which changed with the number of the non-authorized users in competitive channel is used. Non-authorized users judge whether the gamers participated in the channel competition through hidden Markov prediction model (HMPM) , consequently, the accuracy of the game information is improved and the non-authorized users can select the best access probability in the asymmetric information environment to maximize their own utility. The simulation results show that, compared with other protocols, the P-CS- MA protocol based on hidden Markov prediction can improve the better channel utilization of the system.
出处 《电视技术》 北大核心 2014年第19期80-84,共5页 Video Engineering
关键词 非合作博弈 非对称信息 隐马尔可夫 P—CSMA noncooperative game asymmetric information hidden Markov P-CSMA
  • 相关文献

参考文献12

  • 1RAOOF O,AL-RAWESHIDY H S.Spectrum sharing in cognitive radio networks:an adaptive game approach[J] .Communications,IET,2012,6 (11):1495-1501.
  • 2JUNNI Z,XIONG Hongkai,WANG Dawei,et al.Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks[J] .IEEE Trans.Vehicular Technology,2013,62(4):1827-1837.
  • 3龙吟,朱江,李方伟.OFDM认知无线电系统中分布式资源分配[J].电视技术,2013,37(1):118-121. 被引量:9
  • 4CALI F,CONTI M,GREGORI E.Dynamic tuning of the IEEE802.11 protocol to achieve a theoretical throughput limit[J] .IEEE/ACM Trans.Networking,2000,8(6):785-799.
  • 5CALI F,CONTI M,GREGORI E.IEEE802.11 protocol:design and performance evaluation of an adaptive back off mechanism[J] .IEEE Journal on Selected Areas in Communications,2000,18(9):1774-1786.
  • 6GALLAGER R.A perspective on multi access channels[J] .IEEE Trans.Information Theory,1985,31(2):124-142.
  • 7BRUNO R,CONTI M,GREGORI E.Optimal capacity of p-persistent CSMA protocols[J] .IEEE Communications Letters,2003,7 (3):139-141.
  • 8OOSBOME M J,RUBINSTEIN A.A course in game theory[M] .Cambridge:MIT Press,1994:24-29.
  • 9SRIVASTAVA V,NEEL J,MACKENZIE A B,et al.Using game theory to analyze wireless ad hoc networks[J] .IEEE Communications Surveys and Tutorials,2005,7 (4):46-56.
  • 10RABINER L R.A tutorial on hidden Markov models and selected applications in speech recognition[J] .Proceedings of the IEEE,1989,77(2):257-286.

二级参考文献11

  • 1BRODERSEN R W,WOLISZ A,CABRIC D,et al. Corvus: a cognitive ra- dio approach for usage of virtual unlicensed spectrum[ EB/OL]. [2012- 02-20 ]. http ://www2. tkn. tu - berlin, de/publications/papers/CR - White-paper-final. pdf.
  • 2HAYKIN S. Cognitive radio: brain-empowered wireless communications [ EB/OL]. [ 2012-02-20 ]. http ://www. shihada, com/F10-244/pa- pers/getPDF2, pdf.
  • 3SUN Dawei, ZHENG Baoyu, XU Xiaorong. Multi-user cognitive OFDM with adaptive sub-carrier and power allocation [ C ]//Proc. 2nd Interna- tional Conference on Future Computer and Communication, 2010. [ S. 1. ] : IEEE Press ,2010:159-163.
  • 4XU Shiquan,ZHANG Qinyu, LIN Wei. PSO-based OFDM adaptive pow- er and bit allocation for multiuser cognitive radio system[ C]//Proc. 5th International Conference on Wireless Communications, Networking and Mobile omputing, 2009. [S. 1. ] :IEEE Press,2009:1-4.
  • 5KRONGOLD B S. Optimal efficient discrete resource allocation for OFD- MA systems[ C]//Proc. IEEE Wireless Communications and Networking Conference 2008. Las Vegas:IEEE Press,2008:1722-1727.
  • 6BOYD S, VANDENBERGHE L. Convex optimization [ M ]. Cambridge, USA: Cambridge University Press ,2004:215-273.
  • 7YU W,LUI R. Dual methods for nonconvex spectrum optimization of multi- carrier systems[J]. IEEE Trans. Cotmmnications,~05,54(7) :1310-1322.
  • 8PALOMAR D P, CHIANG M. A tutorial on decomposition methods for network utility maximization [ J ]. IEEE Journal on Selected Areas in Communications ,2006,17 ( 8 ) : 1439-1451.
  • 9BLETSAS A, KHISTI A, REED D. A simple cooperative diversity meth-od based on network path selection[ J]. IEEE Journal on Selected Areas in Communieations ,2006,24 (3) :659-672.
  • 10ZHOU Nan, ZHU Xu, HUANG Yi, et al. Low complexity crosslayer de- sign with packet dependent scheduling for heterogeneous traffic in multi- user OFDM Systems[ J]. IEEE Trans. Wireless Communications,2010, 9( 6 ) :1912-1923.

共引文献8

同被引文献24

  • 1MIL -STD - 188 - 141B, Mil. Std. , Interoperability andPerformance Standards for Data Modems [ S],Draft Ver-sion Revised March 2000.
  • 2Teemu V, Toni L, Matti R. Cognitive HF-New Perspec-tives to Use the High Frequency Band[ C]. 2014 9th In-ternational Conference on Cognitive Radio Oriented Wire-less Networks. Oulu: IEEE Press, 2014: 108-113.
  • 3Akbar I A, Tranter W H. Dynamic Spectrum Allocationin Cognitive Radio Using Hidden Markov Models : PoissonDistributed Case [ C ]. Proceedings of IEEE SoutheastConference. USA: IEEE Press, 2007 : 196-201.
  • 4Melian - Guti6rrez L. HF Spectrum Activity PredictionModel based on HMM for Cognitive Radio Applications[J]. Physical Communication, 2013,9(4) : 199-211.
  • 5Rabiner L. A Tutorial on Hidden Markov Models and Se-lected Applications in Speech Recognition [ J]. Proceed-ings of the IEEE, 1989, 77(2) :257-286.
  • 6Nguyeny T, Mark B L, Ephraim Y. Hidden MarkovProcess based Dynamic Spectrum Access for CognitiveRadio [ C ]. Information Sciences and Systems. Balti-more, USA : IEEE Press, 2011:1-6.
  • 7Choi K W,Hossain E. Estimation of Primary User Parame-ters in Cognitive Radio Systems via Hidden Markov Model[J]. Signal Processing,2013,61(3) :782-795.
  • 8Park C H. HMM based Channel Status Predictor forCognitive Radio[ C ]. Proceedings of Asia-Pacific Mi-crowave Conference 2007. Bangkok : IEEE Press,2007:1-4.
  • 9MIL-STD- 188- 141B, Mil. Std. , Interoperability and Performance Standards for Data Modems [ S ] , Draft Version Revised March 2000.
  • 10Akbar I A and Tranter W H. Dynamic Spectrum Allocation in Cognitive Radio Using Hidden Markov Models: Poisson Distributed Case [ C ]. Proceedings of IEEE Southeast Conference. USA : IEEE Press ,2007 : 196-201.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部