期刊文献+

基于CPSO-AdaBoost算法的人脸检测方法

Face Detection Based on CPSO-Ada Boost Algorithm
下载PDF
导出
摘要 Ada Boost分类器训练算法对特征搜索的时间复杂度较高,改进的PSO-Ada Boost算法采用最佳特征搜索方式训练耗时减少,但在迭代过程中容易陷入局部最优解。为此,提出用混沌粒子群优化Ada Boost训练算法的CPSO-Ada Boost算法。通过引入混沌优化序列增加种群的多样性并扩大粒子搜索范围,帮助粒子克服"惰性"摆脱局部最优解,从而在训练分类器时可以快速寻找到性能更好的弱分类器。在MIT样本库上训练人脸检测分类器结果表明,CPSO-Ada Boost算法减少了训练过程中所需要的特征数量,缩短了训练时间,有效地提高了人脸检测率。 The time complexity of AdaBoost classifier training algorithm search feature is high, and the PSO-AdaBoost algorithm search for the best features can reduce training time-consuming. However, the iterative process is easy to fall into local optimal solutions. To this end, CPSO-AdaBoost based on chaotic panicle swarm optimization AdaBoost training algorithm is proposed. By introducing the chaos optimization sequence increase the di- versity of population and expand the range of particle search range, it can help panicles to overcome the "inertia" and get rid of local optimal solu- tions, and it can quickly find the weak classifiers with better performance when training a classifier. On the MIT sample library, training face detection classification results show that CPSO-AdaBoost algorithm can reduce the number of features needed for the training process, reduce the training time, and effectively improve the human face detection rate.
作者 闫斌 梁岚珍
出处 《电视技术》 北大核心 2014年第19期175-178,187,共5页 Video Engineering
基金 北京市教委学术创新团队项目(PHR201106149)
关键词 人脸检测 ADABOOST算法 粒子群算法 混沌优化 face detection AdaBoost algorithm particle swarm optimization chaos optimization
  • 相关文献

参考文献8

  • 1VIOLA P,JONES M.Robust real-time face detection[J] .International Journal of Computer Vision,2004,57 (2):137-154.
  • 2ZHANG L,CHU R,XIANG S,et al.Face detection based on multiblock LBP representation[EB/OL] .[2014-01-16] .http://link.springer.com/chapter/10.1007% 2F978-3-540-74549-5_2.
  • 3LI S Z,ZHANG Z Q.Floatboost learning and statistical face detection[J] .IEEE Trans.Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
  • 4MOHEMMED A W,ZHANG Mengjie,JOHNSTON M.Particle swarm optimization based AdaBoost for face detection[C] //Proc.IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2009:2494-2501.
  • 5MOHEMMED A W,ZHANG M J,JOHNSTON M.Particle swarm optimization based AdaBoost for face detection[EB/OL] .[2014-01-16] .http://www.researchgate.net/publication/221008163 _ Particle_Swarm_Optimization_based_Adaboost_for_face_detection.
  • 6孙子文,王鑫雨,白勇,纪志成.基于信度和早熟检验的混沌粒子群优化定位算法[J].传感器与微系统,2013,32(9):129-133. 被引量:4
  • 7李睿,张九蕊,毛莉.基于EREF的PSO-AdaBoost训练算法[J].计算机应用研究,2012,29(1):127-129. 被引量:4
  • 8SHI Y,EBERHART R.A modified particle swarm optimizer[C] //Proc.the IEEE World Congress on Computational Intelligence.Piscataway:IEEE Service Center,1998:69-73.

二级参考文献23

  • 1YANG M H, KRIEGMAN D, AHUJA N. Detecting faces in images: a survey [J]. IEEE Trans on PAMI,2002,24(1):34-58.
  • 2MORENCYA L P, SIDNERB C,LEEC C,et al. Head gestures for perceptual interfaces:the role of context in improving recognition [ J ]. Artificial Intelligence,2007, 171 (8) :568- 585.
  • 3BEVILANCQUA V,FILOGRANO G,MASTRONARDI G. Face Detection by means of skin detection [ C ]//Lecture Notes in Computer Science, vol 5227. Berlin : Springer-Verlag,2008 : 1210-1220.
  • 4PALIY I. Face detection using Haar-like features cascade and convolutional neural network [ C ]//Prec of International Conference on Modem Problems of Radio Engineering, Telecommunications and Computer Science. 2008 : 375- 377.
  • 5FREUND Y, SCHAPIRE R. A decision theoretic generalization of online learning and application to boosting[ J ]. Journal of Computer and System Science, 1997,55 (1) : 119-139.
  • 6MOHEMMED A W, ZHANG Meng-jie, JOHNSTON M. Particle swarm optimization based AdaBoost for face detection [ C ]//Proc of IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2009 : 2494- 2501.
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proc of the 4th IEEE International Conference on Neural Networks. 1995 : 1942-1948.
  • 8Li Wenfeng, Bao Junrong, Shen Weiming. Collaborative wireless sensor networks:A survey[ C]//Systems,Man, and Cybernetics, Anchorage : IEEE ,2011:2614 -2619.
  • 9Kulkami R V, Venayagamoorthy G K. Particle swarm optimization in wireless sensor networks : A brief survey [ J ]. IEEE Trans on Systems, Man, and Cybernetics, Part C : Applications and Re- views ,2010,40(5 ) : 1 -7.
  • 10Chuang P J, W~ C P. An effective PSO-based node localization scheme for wireless sensor networks [ C ]//Parallel and Distributed Computing, Applications and Technologies, Dunedin : IEEE, 2008:187 -194.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部