期刊文献+

大气压附近不同温度对碘气体简并四波混频光谱的影响

Effects of different atmospheric pressures and temperatures on degenerate four-wave mixing spectroscopy in iodine vapor
下载PDF
导出
摘要 非线性激光光谱技术在气相介质的痕迹量检测方面有广泛应用。实验采用了具有自稳分光系统的前向简并四波混频(DFWM)布局,在大气压附近不同压强和不同温度条件下研究了碘气体的DFWM光谱。在饱和泵浦和探测光强的情况下,发现温度与压强的变化对碘在波长555~556 nm及558~559 nmDFWM光谱结构影响较大,其中波长为555.1 nm 的跃迁对温度相当敏感。同时仍有少数碘的DFWM光谱线较强是因为跃迁(558.81 nm)对温度不敏感,可以利用该谱线来探测不同温度下气相介质的浓度变化。所以不同温度与压强对碘气体DFWM光谱影响的研究在气相介质痕迹量的检测以及燃烧诊断等方面有重要的应用价值。 Nonlinear laser spectroscopy has been widely applied for species trace in the gas-media. Forward DFWM with a self-stability beam-spiltting system was demonstrated in iodine vapor at different temperatures and pressures. It is found that the effects of the variable temperature and pressure on DFWM spectra structure (555-556 nm and 558-559 nm) are vivid under the saturated pumping and probing situation, and first of all, a wavelength (555.1 nm) sensitive to temperature in the atmospheric pressure is found. Also the wavelengths(558.81 nm) insensitive to temperatures, which the wavelength can be used to measure the gas-phase media concentration at varied temperatures. Effects of different temperatures and atmospheric pressures on the DFWM spectroscopy in iodine vapor at atmospheric pressure are of importance to trace atom, molecular and radical in combustion diagnosis.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第9期2981-2985,共5页 Infrared and Laser Engineering
基金 天津市自然科学基金(13JCYBJC16000) 黑龙江省自然科学基金(200908)
关键词 非线性激光光谱技术 DFWM光谱 碘蒸汽 热光栅效应 nonlinear laser spectroscopy technique DFWM spectra iodine vapor thermal grating effect
  • 相关文献

参考文献3

二级参考文献29

  • 1施世明,陈德应,郑企克,秦启宗.SO_2的简并四波混频光谱[J].物理化学学报,1996,12(4):293-295. 被引量:2
  • 2Farrow R L, Rakestraw D J. Science, 1992, 257: 1894.
  • 3Stavros V G, Harel E, Leone S.R. J. Chem. Phys., 2005, 122(6): 64301.
  • 4Farrow R L, Rakestraw DJ. Appl. Phys. B, 1999, 68(4): 741.
  • 5Bultitude K, Stevens R, Ewart P. Appl. Phys, B, 2004, 79(6): 767.
  • 6Bultitude K, Bratfalean R, Ewart P, J. Raman Spectrosc. , 2003, 34(12): 1030.
  • 7Hornung T, Skenderovic H, Motzkus M. Chem. Phys. Lett. , 2005, 402(4-6): 283.
  • 8Meijer G, Chandler D W. Chem. Phys. Lett. , 1992, 192: 1.
  • 9Nyholm K. Appl. Phys. B, 1997, 64: 707.
  • 10Grant A J, Ewart P, Stone C R. Appl. Phys. B, 2002, 74(1):105.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部