期刊文献+

GaAs/Al_(0.3)Ga_(0.7)As QWIP暗电流特性HRTEM研究 被引量:5

Dark current of GaAs/Al_(0.3)Ga_(0.7) As quantum well infrared photodetector by HRTEM
下载PDF
导出
摘要 采用金属有机物化学气相沉积法(MOCVD)生长GaAs/Al0.3Ga0.7As量子阱材料,制备300μm×300μm台面,内电极压焊点面积为20μm×20μm,外电极压焊点面积为80μm×80μm的单元样品两种。用变温液氮制冷系统对样品进行77~300 K暗电流特性测试。结果显示,器件暗电流曲线呈现出正负偏压的不对称性。利用高分辨透射扫描电镜(HRTEM)获得样品纳米尺度横断面高分辨像,分析结果表明:样品横断面处存在不同程度的位错及不均匀性。说明样品内部穿透位错造成相位分离是引起量子阱光电性能变差的根本原因,不同生长次序中AlGaAs与GaAs界面的不对称性与掺杂元素的扩散现象加剧了暗电流曲线的不对称性。 The method of Metal Organic Chemical Vapor Deposition (MOCVD) was used to grow GaAs/Al0.3Ga0.7As quantum well material. Which is prepared for quantum well infrared photodetectors (QWIP). The two sample-devices have large surface area 300μm×300μm. But its pressure welding area of inside electrode is 20μm×20μm while that of the one outside is 80μm×80μm. Refrigerating machine of liquid nitrogen was adopted to do dark current test under variable-temperature from 77 K to 300 K . The dark current was studied under different bias voltages. The results show that dark current curves is asymmetric under positive and negative bias voltage. The crystal structure is investigated by use of high-resolution transmission electron microscope (HRTEM) to determine the exact reson. Which shows that there is thread dislocation and nonuniformity in different degrees. The follows is known from above: It is the phase separation caused by the threading dislocation that leads to photoelectric performance variation essentially. At the same time, it is interfacial asymmetry between AlGaAs and GaAs in different growing orders and the doping element diffusion that intensifies asymmetry of dark current.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第9期3057-3060,共4页 Infrared and Laser Engineering
基金 西安工业大学光电工程学院重点院长基金(13GDYJZ01) 总装先进制造(51318020303) 陕西教育厅项目(12Jk0980) 国防基础研究项目(A0920110019) 陕西省薄膜技术与光学检测重点实验室开放基金(ZSKJ201401)
关键词 量子阱红外探测器 GAAS/ALGAAS 金属有机物化学气相沉积 暗电流 高分辨透射扫描电镜 quantum well infrared photodetectors GaAs/AlGaAs metal organical chemical vapordeposition (MOVCD) dark current high-resolution transmission electron microscope(HRTEM)
  • 相关文献

参考文献5

二级参考文献39

  • 1苏艳梅,种明,张艳冰,胡小燕,孙永伟,赵伟,陈良惠.128×160元GaAs/AlGaAs多量子阱长波红外焦平面阵列[J].Journal of Semiconductors,2005,26(10):2044-2047. 被引量:13
  • 2熊大元,曾勇,李宁,陆卫.甚长波量子阱红外探测器光栅耦合的研究[J].物理学报,2006,55(7):3642-3648. 被引量:8
  • 3李献杰,刘英斌,冯震,过帆,赵永林,赵润,周瑞,娄辰,张世祖.9μm截止波长128×128AlGaAs/GaAs量子阱红外焦平面探测器阵列(英文)[J].Journal of Semiconductors,2006,27(8):1355-1359. 被引量:4
  • 4李宁,郭方敏,熊大元,陆卫,王文新,黄绮,周均铭.256×1甚长波量子阱红外焦平面研究[J].红外与激光工程,2006,35(6):756-758. 被引量:7
  • 5Rogalski A. Quantum well photoconductors in infrared detector technology [J]. Journal of Applied Physics, 2003, 93 (8): 4355-4391.
  • 6Levine B F, Malik R J, Walker J, et al. Strong 8.2 μm infrared intersubband absorption in doped GaAs/AlAs quantum-well wave-guides[J]. Applied Physics Letters, 1987, 50(5): 273-275.
  • 7Gunapala S D, Bandara S V, Liu J K, et al. 1 024 ×1024 pixel MWIR and LWIR QWIP focal plane arrays and 320× 256 MWIR: LWIR pixel colocated simultaneous dualband QWIP focal plane arrays[C]//SPIE, 2005, 5783.
  • 8Gunapala S D, Liu J K, Park J S, et al. 9 μm 256×256 cutoff GaAs/AlxGa1-x quantum well infrared photodetector hand- held camera[J]. IEEE Transactions on Electron Device, 1997, 44(1): 51-57.
  • 9Tidrow M Z. Device physics and state-of-the-art of quantum well infrared photodetectors and arrays[J]. Materials Science and Engineering, 2000, 74(1): 45-51.
  • 10Li Xianjie, Liu Yingbin, Feng Zhen, et al. 9 μm cutoff 128×128 AlGaAs/GaAs quantum well infrared photodetector focal plane arrays [J]. Chinese Journal of Semiconductor, 2006, 27(8): 1355-1359.

共引文献30

同被引文献28

  • 1孙伟业,邓军,何磊磊,杜欣钊.多量子阱红外探测器耦合光栅的新型制备工艺[J].微纳电子技术,2020,57(1):66-72. 被引量:2
  • 2熊大元,曾勇,李宁,陆卫.甚长波量子阱红外探测器光栅耦合的研究[J].物理学报,2006,55(7):3642-3648. 被引量:8
  • 3熊大元,李宁,徐文兰,殷菲,陆卫.A New Resonant Tunnelling Structure of Integrated InGaAs/GaAs Very-Long-Wavelength Quantum-Well Infrared Photodetector[J].Chinese Physics Letters,2007,24(11):3283-3285. 被引量:5
  • 4Mehjabeen A Khan, Akeed A Pavel, Naz Islam. Intersubband transition in asymmetric quantum well infrared photodetector [J]. IEEE Transactions on Nana Technology, 2013, 12(4): 521-523.
  • 5Kwong-Kit Choi, Murzy D Jhabvala, David P Forrai, et al. Electromagnetic modeling and design of quantum well infrared photodetectors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 3800310.
  • 6Ribet-Mohamed I, Le Rouzo J, Rommeluere S, et al.Advanced characterization of the radiometric performances of quantum well infrared photodetectors [J]. Infrared Physics Technology, 2005, 47: 119-131.
  • 7Zhang Chi, Chang Huiting, Zhao Fangyuan, et al. Design principle of Au grating couplers for quantum-well infrared photodetectors[J]. Optics Express, 2013, 38(20): 4037-4039.
  • 8Kwong-Kit Choi, Murzy D Jhabvala, et al. Electromagnetic modeling of quantum well infrared photodetectors [J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 384-393.
  • 9Li N, Xiong D Y, Yang X F, et al. Dark currents of GaAs/ A1GaAs quantum-well infrared photodetectors[J]. Appl Phys A, 2007, 89: 701-705.
  • 10陆卫,李宁,甄红楼,徐文兰,熊大元.红外光电子学中的新族--量子阱红外探测器[J].中国科学(G辑),2009(3):336-343. 被引量:13

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部