期刊文献+

木薯转化酶抑制子MeINH3基因的克隆及生物信息学分析 被引量:1

Cloning and Bioinformatics Analysis of Invertase Inhibitors Gene MeINH3 from Cassava(Manihot esculenta Crantz)
下载PDF
导出
摘要 转化酶抑制子调控转化酶的活性,在植物的糖代谢过程中具有重要作用。为了研究木薯的转化酶抑制子,本实验利用木薯基因组数据库分析及RT-PCR方法,从木薯中分离了1个木薯转化酶抑制子MeINH3的cDNA序列。MeINH3序列长度为564 bp,包含528 bp的完整开放阅读框,编码127个氨基酸,N端有16个氨基酸残基的信号肽,4个保守的半胱氨酸残基可形成两个二硫桥。亚细胞定位预测表明,MeINH3蛋白定位于胞外。根据生物信息学分析结果,推测其可能抑制木薯细胞壁转化酶活性。 Invertase inhibitor controls the activity of invertase and plays a significant role in the sucrose metabolic processes in plants.An invertase inhibitor gene MeINH3 was isolated from cassava by cassava genome database analysis and RT-PCR.Analysis of the sequence indicated that the cDNA of MeINH3 was consisted of 564 bp with an open reading frame (ORF) of 528 bp encoding 127 amino acids.MeINH3 had a signal peptide including 16 amino acids at N terminus and four conserved cysteine residues forming two disulfide bridges.The subcellular localization prediction showed that MeINH3 protein was located extracellularly,suggesting that it may inhibit the activity of cassava cell wall invertase.
出处 《热带作物学报》 CSCD 北大核心 2014年第9期1715-1720,共6页 Chinese Journal of Tropical Crops
基金 国家973重大基础性项目(No.2010CB126600) 国家自然科学基金(No.31170234) 国家自然科学基金(No.31160061) 木薯现代产业科技体系项目
关键词 木薯 转化酶抑制子 基因克隆 生物信息学分析 Cassava Invertase inhibitor , Gene cloning Bioinformatics analysis
  • 相关文献

参考文献15

  • 1Rolland-Sabat A, S6nchez T, Bul6on A, et al. Structuralcharacterization of novel cassava starches with low and high- amylose contents in comparison with other commercial sources[J]. Food Hydroeolloids, 2012, 27(1): 161-174.
  • 2Jansson C, Westerbergh A, Zhang J M, et ol. Cassava, a potential biofuel crop in(the)People's Republic of China[J]. Applied Energy, 2009, 86: S95-S99.
  • 3Sojikul P, Kongsawadworakul P, ViboonjunU, et ol. AFLP- based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation[J]. Physiologia plantarum, 2010, 140(2): 189-298.
  • 4Li Z, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit[J]. Journal of Experimental Botany, 2012, 63(3): 1 155-1 166.
  • 5RoitsehT, Balibrea M E, Hofmann M, et al. Extracellular invertase: key metabolic enzyme and PR protein [J]. Journal of Experimental Botany, 2003, 54(382): 513-524.
  • 6Yong-Ling Ruan,Ye Jin,Yue-Jian Yang,Guo-Jing Li,John S. Boyer.Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat[J].Molecular Plant,2010,3(6):942-955. 被引量:105
  • 7Siemens J, Gonz6Lez M C, Wolf S, et al. Extracellularinvertase is involved in the regulation of clubroot disease in Arabidopsis thaliana[J]. Molecular plant pathology, 2011, 12 (3): 247-262.
  • 8Misi D, Dragi evi M, Siler B, et al. Sugars and acid invertase mediate the physiological response of Schenkia spicata root cultures to salt stress[J]. Journal of plant physiology, 2012, 169: 1 281-1 289.
  • 9Tang G Q, Luscher M, Sturm A, et al. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning[J]. The Plant Cell, 1999, 11(2): 177-189.
  • 10Rausch T, Greiner S. Plant protein inhibitors of invertases[J]. Biochimica et Biophysica Acta, 2004, 1696(2): 253-261.

二级参考文献162

  • 1Jurgens, S.K., Johnson, R.R., and Boyer, J.S. (1978). Dry matter production and translocation in maize subjected to drought during grain fill. Agronomy J. 70, 678-682.
  • 2Asano, N., Nash, R.J., Molyneux, R.J., and Fleet, G.W. (2000). Sugarmimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedon. 11, 645-1680.
  • 3Bate, N.J., Niu, X., Wang, Y., Reimann, K.S., and Helentjaris, T.G. (2004). An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol. 134, 246-254.
  • 4Benhamou, N., Grenier, J., and Chrispeels, M.J. (1991). Accumulation of β-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol. 97, 739-750.
  • 5Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., and Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol. Plant. 122, 419-428.
  • 6Berger, S., Sinha, A.K,, and Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plantpathogen interactions. J. Exp. Bot. 58, 4019-4026.
  • 7Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., and Berger, S. (2006). Infection with virulent and avirulent P syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta. 225, 1-12.
  • 8Brunkhorst, C. (2004). Untersuchungen zum Acarbose-Metabolismus von Actinoplanes sp,: Charakterisierung der Maltose/Maltotriose- Transportaktivitaten sowie eines potentiellen ABC-Transporters fur Acarbose. PhD thesis.
  • 9Brunkhorst, C., Andersen, C., and Schneider, E. (1999). Acarbose, a pseudooligosaccharide, is transported but not metabolized by the maltose-maltodextrin system of Escherichia coli. J. Bacteriol, 181, 2612-2619,.
  • 10Chou, H., Bundock, N., Rolfe, S., and Scholes, J. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida causes a reprograrnrning of host metabolism. Mol. Plant Pathol. 1, 99-113.

共引文献115

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部