期刊文献+

外激励作用下弹性支撑浅拱的非线性动力学分析 被引量:1

NONLINEAR DYNAMICAL BEHAVIOURS OF ELASTICALLY SUPPORTED SHALLOW ARCH UNDER EXTERNAL EXCITATIONS
原文传递
导出
摘要 研究了外激励下两端采用转动弹簧约束的铰支浅拱在发生1∶1内共振时的非线性动力学行为.通过引入基本假定和无量纲化变量得到浅拱的动力学控制方程,将阻尼项、外荷载项和非线性项去掉后,所得线性方程及对应边界条件即可确定考虑转动弹簧影响的频率和模态,发现转动约束取不同刚度值时系统存在模态交叉与模态转向两种内共振形式.对动力方程进行Galerkin全离散,并采用多尺度法对内共振进行了摄动分析,得到了极坐标和直角坐标两种形式的平均方程,其中平均方程系数与转动弹簧刚度一一对应.最低两阶模态之间1∶1内共振的数值研究结果表明:外激励能激发内共振模态的非线性相互作用,参数处于某一范围时系统存在周期解、准周期解和混沌解窗口,且通过(逆)倍周期分岔方式进入混沌. The nonlinear resonance dynamics of the hinged shallow arches,both ends of which are con- strained by torsional springs, under external excitation are investigated. The dimensionless dynamic equa- tions are obtained by employing the basic assumptions of shallow arch. By removing the damper, external load and non-linear terms, the obtained linear equation under given boundary conditions is solved to determine the frequencies and modes. Two internal resonance types of crossing and veering are found when the torsional constraints adopt different stiffness values. Further, the dynamic equation is solved by a full-basis Galerkin discretization,and the multiple scale method is used to study the internal resonances by perturba- tion analysis, which leads to both the polar- and Cartesian-form averaging equations whose coefficients have a one-to-one correspondence with the stiffness of torsional spring. The numerical results for 1 : 1 internal resonance between the two lowest modes show that the nonlinear interactions can be excited by external excitation. Moreover, when the parameters are controlled in a certain range, there are periodic, quasi-period- ic and chaotic windows in the system,which can enter into chaos by the (inverse) period-doubling bifurcation.
出处 《固体力学学报》 CAS CSCD 北大核心 2014年第4期367-377,共11页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11002030 11032004) 教育部新世纪优秀人才支持项目(NCET-09-0335)资助
关键词 浅拱 转动弹性支撑 1∶1内共振 多尺度法 倍周期分岔 混沌 shallow arches,torsional elastic support, 1 : 1 internal resonance,multiple scale method,period-doubling bifurcation, chaos
  • 相关文献

参考文献14

  • 1Xu J X, Huang H,Zhang P Z,Zhou J Q. Dynamic sta- bility of shallow arch with elastic supports-application in the dynamic stability analysis of inner winding of transformer during short circuit [J]. International Journal of Non-Linear Mechanics, 2002, 37 (4-5): 909-920.
  • 2Chen J S,Li Y T. Effects of elastic foundation on the snap through buckling of a shallow arch under a mov- ing point load [J]. International Journal of Solids and Structures, 2006,43(14-15) :4220-4237.
  • 3Lacarbonara W,Arafat H N, Nayfeh A H. Non-linear interactions in imperfect beams at veering[J]. Interna-tional Journal of Non-Linear Mechanics, 2005,40( 7): 987- 1003.
  • 4Malhotra N, Namachchivaya N S. Chaotic dynamic of shallow arch structures under 1 : 2 resonance[J]. Jour nal Engineering Mechanics,1997,123(6):612-619.
  • 5Malhotra N, Namachchivaya N S. Chaotic motion of shallow arch structures under 1 : 1 internal resonance [J]. Journal Engineering Mechanics, 1997, 123 ( 6 ) : 620-627.
  • 6Bi Q,Dai H H. Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance [J]. Journal of Sound and Vibration,2000,233(4): 557-571.
  • 7Zhou L Q,Chen Y S,Chen F Q. Global bifurcation a- nalysis and chaos of an arch structure with parametric and forced excitation [J]. Mechanics Research Com- munications,2010,37(1): 67- 71.
  • 8刘习军,陈予恕,侯书军.拱型结构在参、强激励下的非线性振动分析[J].力学学报,2000,32(1):99-104. 被引量:5
  • 9王钟羡,江波,孙保昌.周期激励浅拱的全局分岔[J].江苏大学学报(自然科学版),2004,25(1):85-88. 被引量:4
  • 10Nay/eh A H, Mook D T. Nonlinear Oscillations [M]. New York: John Wiley & Sons Inc. 1979.

二级参考文献11

  • 1[1]Tien Win-Min, Sri Namachchivaya N, Malhotra N.Nonlinear dynamics of a shallow arch under periodic excitation-Ⅱ 1∶1 internal resonance[J]. Int J Nonlinear Mech, 1994, 29: 367-386.
  • 2[2]Tien Win-Min, Sri Namachchivaya N, BajaiAnil K. Nonlinear dynamics of a shallow arch under periodic excitation-I. 1∶2 internal resonance[J]. Int J Nonlinear Mech, 1994, 29: 349-366.
  • 3[3]BI Qin-sheng, DAI Hui-hui. Analysis of nonlinear dyna-mics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance[J]. Journal of Sound and Vibration, 2000, 233: 557-571.
  • 4[6]Kovacic G, Wiggins S. Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation[J]. Physica D, 1992, 57: 185-225.
  • 5[7]Wiggins S. Global bifurcation and chaos-analytical methods[M]. New York: Berlin, Springer-Verlag, 1998.
  • 6[8]YU Pei, ZHANG Wei, BI Qin-sheng. Vibration analysis on a thin plate with the aid of computation of normal forms[J]. International Journal of Nonlinear Mechanics, 2001, 36: 597-627.
  • 7[9]ZHANG Wei, TANG Yun. Global dynamics of the cable under combined parametrical and external excita-tions[J]. International Journal of Nonlinear Mechanics, 2002, 37: 505-526.
  • 8[10]ZHANG Wei, LI Jing. Global analysis for a nonlinear vibration absorber with fast and slow modes[J]. International Journal of Bifurcation and Chaos, 2001: 2179-2194.
  • 9陈予恕,非线性振动系统的分叉和混沌理论,1993年
  • 10陈予恕,非线性振动,1983年

共引文献6

同被引文献9

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部