期刊文献+

机器鱼运动学SSPR建模与自适应迭代学习控制 被引量:3

Robotic fishes kinematics SSPR modeling and adaptive iterative learning control
原文传递
导出
摘要 针对一类多关节机器鱼推进速度的调节,提出一种运动学建模与控制匹配设计的新方法.以可控性为目标,建立了基于能量转化系数的鱼尾摆动规律与推进速度性能参考(SSPR)模型,系统已知参数把能量转化率收敛到一个可控可调节范围.自适应迭代学习控制策略与之匹配,能适时辨识并周期性地更新该模型的能量转化系数,实现机器鱼在陌生水环境中的推进速度自调节.仿真分析验证了该模型和控制方法的正确性. A class of modeling and control combination method is proposed to realize the speed adjustment of robotic fish with multi-joint caudal fin. Targeting at controllability, a swing rule and propulsion speed performance reference(SSPR) model is established based on an energy conversion coefficient, and the efficiency is converged to a controllable and adjustable range by system’s known parameters. Then, an adaptive iterative learning control policy is designed to match the SSPR model, the control system can identify and update the energy conversion coefficient timely and periodically, and realize the speed self-adjustment of robotic fish in a strange water environment. Simulation analysis verifies the correctness of the model and control method.
作者 任光 戴亚平
出处 《控制与决策》 EI CSCD 北大核心 2014年第9期1605-1610,共6页 Control and Decision
基金 长江学者和创新团队发展计划项目(IRT1208)
关键词 机器鱼 能量转换系数 参考模型 自适应迭代学习控制 robotic fishes energy conversion coefficient reference model adaptive iterative learning control
  • 相关文献

参考文献12

二级参考文献49

  • 1俞经虎,竺长安,邱欲明,程刚,张屹,李川奇.仿生机器鱼的动力学仿真[J].机器人,2003,25(z1):610-613. 被引量:4
  • 2王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23. 被引量:21
  • 3于凯,黄胜,胡健,郭春雨.仿鱼推进器的水动力性能研究[J].华中科技大学学报(自然科学版),2007,35(5):69-72. 被引量:4
  • 4[1]LIU Jin-dong.HU Huo-sheng.Building a 3D Simulator for Autonomous Navigation of Robotic Fishes,[EB/OL].[2008-03-10].http://ieeexplore.ieee.org/xpls/abs_all.jsp? arnumbor=1389420.
  • 5Papadopoulos E, Apostolopoulos E, Tsigkourakos P. Design, con- trol and experimental performance of a teleoperated robotic fish//Proceedings of 17 th Mediterranean Conference on Control & Automa- tion. Thessaloniki, 2009:766.
  • 6Martin J S, Scheid J F, Takahashi T, et al. An initial and bound- ary value problem modeling of fish-like swimming. Arch Ration Mech Anal, 2009, 188(3) : 429.
  • 7Morgansen K A, Duindam V, Mason R J, et al. Nonlinear control methods for planar Carangiform robot fish locomotion//Proceedings of the 2001 IEEE International Conference on Robotics & Automa- tion. Seoul, 2001:427.
  • 8Wang K, Yu J Z. An embedded vision system for robotic fish navi- gation//Proceedings of htternational Conference on Computer Appli- cation and System Modeling. Taiyuan, 2010:333.
  • 9Chen W S, Xia D, Liu J K. Modular design and realization of a torpedo-shape robot fishi Proceedings of IEEE International Con- ference on Mechatronics and Automation. Takamatsu, 2008:125.
  • 10Mason R M, Burdick J W. Experiments in carangiform robotic fish locomotion//Proceedings of IEEE International Conference on Ro- botics & Automation. San Francisco, 2000:428.

共引文献131

同被引文献22

  • 1陈世明,方华京.大规模移动智能群体的建模及联合行为分析[J].控制与决策,2005,20(12):1392-1396. 被引量:13
  • 2Nakashima M, Tsubaki T, Ono K. Three-dimensional move- ment in water of the dolphin robot: Control between two posi- tions by roll and pitch combination[J]. Journal of Robotics and Mechatronics, 2006, 18(3): 347-355.
  • 3Yu J Z, Hu Y H, Fan R F, et al. Construction and control of biomimetic robotic dolphin[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006: 2311-2316.
  • 4Wang M, Yu J Z, Tan M, et al. Design and implementation of a novel CPG-based locomotion controller for robotic dol- phin[C]//8th World Congress on Intelligent Control and Au- tomation. Piscataway, USA: IEEE, 2010: 1611-1616.
  • 5Yu J Z, Su Z S, Wang M, et al. Control of yaw and pitch ma- neuvers of a multilink dolphin robot[J]. IEEE Transactions on Robotics, 2012, 28(2): 318-329.
  • 6Shen F, Cao Z Q, Zhou C, et al. Depth control for robotic dol- phin based on fuzzy PID control[J]. International Journal of Off- shore and Polar Engineering, 2013, 23(3): 166-171.
  • 7Morgansen K A, Duindam V, Mason R J, et al. Nonlinear control methods for planar carangiform robot fish locomo- tion[C]//IEEE International Conference on Robotics and Au- tomation. Piscataway, USA: IEEE, 2001: 427-434.
  • 8Saimek S, Li P Y. Motion planning and control of a swimming machine[J]. International Journal of Robotics Research, 2004, 23(1): 27-53.
  • 9Romanenko E V. Fish and dolphin swimming[M]. Moscow, Russian: Pensoft, 2002.
  • 10Yu J Z, Hu Y H, Fan R F. Mechanical design and motion control of a biomimetic robotic dolphin[J]. Advanced Robotics, 2007, 21(3/4): 499-513.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部