期刊文献+

关于惩罚函数中惩罚系数的讨论 被引量:14

Penalty parameter of the penalty function method
原文传递
导出
摘要 对惩罚函数法中的惩罚系数进行了系统分析和讨论.首先,针对Deb基于可行性规则对约束违反相同情况下的比较没有具体说明的现状,提出一种改进的Deb基于可行性规则.在此基础上,证明了惩罚系数过大或者过小均不会影响排序的结论,并给出了惩罚系数影响排序的上下边界.实例分析表明了所得结论的有效性,为基于惩罚系数的算法设计提供了依据. The penalty parameter of penalty function method is systematically analyzed and discussed. For the problem that Deb’s feasibility-based rule doesnot give the detailed instruction as how to rank two solutions when they have the same constraint violation, an improved Deb’s feasibility-based rule is presented, which can be seen as a reference standard. And based on this, the upper and lower boundary of penalty parameter that affects the ranking is obtained. The example verifies the effectiveness of the systematical analysis, which provides a basis for the future algorithm design based on the penalty parameters.
出处 《控制与决策》 EI CSCD 北大核心 2014年第9期1707-1710,共4页 Control and Decision
基金 国家自然科学基金项目(61075064 61034004 61005090) 教育部新世纪人才计划项目(NCET-10-0633) 上海市金融信息技术研究重点实验室开放课题基金项目
关键词 惩罚系数 Deb基于可行性规则 约束处理技术 排序策略 penalty parameter Deb’s feasibility-based rule constraint handling techniques ranking methods
  • 相关文献

参考文献8

  • 1Coello Coello C A. Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12): 1245-1287.
  • 2甘敏,彭辉,王勇.多目标优化与自适应惩罚的混合约束优化进化算法[J].控制与决策,2010,25(3):378-382. 被引量:21
  • 3梁昔明,龙文,秦浩宇,李山春,阎纲.基于种群个体可行性的约束优化进化算法[J].控制与决策,2010,25(8):1129-1132. 被引量:21
  • 4Wang Y, Cai Z X. Combining multiobjective optimization with defferential evolution to solve constrained optimization problems[J]. IEEE Trans on Evolutionary Computation, 2012, 16(1): 117-134.
  • 5Mezura-Montes E, Coello Coello C A. A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Trans on Evolutionary Computation, 2005, 9(1): 1-17.
  • 6Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 311-338.
  • 7Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Trans on Evolutionary Computation, 2000, 4(3): 284-294.
  • 8Wang Y, Cai Z, Zhou Y, et al. An adaptive tradeoff model for constrained evolutionary optimization[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 80-92.

二级参考文献27

  • 1王勇,蔡自兴,曾威,刘慧.求解约束优化问题的一种新的进化算法[J].中南大学学报(自然科学版),2006,37(1):119-123. 被引量:11
  • 2Coello C A C. Theoretical and numerical coastrainthandling techniques used with evolutionary algorithms: A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191 (11/ 12) : 1245-1287.
  • 3Homaifar A, Lai S H Y, Qi X. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4): 55- 77.
  • 4Joines J, Houck C. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs[C]. Proc of the 1st IEEE Conf on Evolutionary Computation. Piscataway,1994: 579-584.
  • 5Hadj-Alouane A B, Bean J C. A genetic algorithm for the multi-choice integer program[ J ]. Operations Research, 1997, 45(1): 92-101.
  • 6Rasheed K. An adaptive penalty approach for constrained genetic algorithm optimization [C]. Proc 3rd Annual Conf on Genetic Programming. San Francisco: Morgan Kaufmann, 1998: 584-590.
  • 7Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization[J]. IEEE Trans on Evolutionary Computation, 2003, 7(5): 445-455.
  • 8Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary: A unified formulation[J]. IEEE Trans on System, Man and Cybernetics, 1998, 28(1): 26-37.
  • 9Runarsson T P, Yao X. Search biases in constrained evolutionary optimization [J]. IEEE Trans on System, Man and Cybernetics, 2005, 35(2):233-243.
  • 10Cai Z, Wang Y. A multiobjeetive optimization-based evolutionary algorithm for constrained optimization[J]. IEEE Trans on Evolutionary Computation, 2006, 10(6) : 658-675.

共引文献40

同被引文献156

引证文献14

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部