期刊文献+

风电随机出力的时间序列模型 被引量:16

Time Series Model of Stochastic Wind Power Generation
下载PDF
导出
摘要 提出了一种风电随机出力的时间序列模型,运用反变换方法将原始出力序列转换为平稳、正态序列,采用自回归移动平均模型对序列进行回归,再将模拟的正态序列转换回原始域,得到风电出力的模拟时间序列。运用该模型对风电出力序列进行模拟,结果同时满足风电出力的时间相关性、概率分布特性、时间分布特性以及波动特性,这说明该模型可用于风电出力不确定分析、电力系统随机优化以及风电储能系统优化运行等方面的研究。 The uncertainty of wind power brings new challenge to power grid operation, and a stochastic wind power model, which captures both probability distribution and temporal correlation of the wind power generation, is the base for the research on large-scale wind farms. A time-series model of stochastic output of wind power is proposed, and the inverse transformation is utilized to transform the original wind power output into normal stationary series and the auto-regressive moving-average model is adopted for the regression of the normal stationary series, and then the simulated normal series are turned back into original domain to obtain simulated time series of wind power out. Using the proposed model, the wind power output series are simulated, and the simulation results can simultaneously satisfy the temporal correlation, probability distribution characteristics, time distribution characteristics and fluctuation characteristics of wind power output, thus the proposed model can be used in the analysis on uncertainty of wind power output and stochastic optimization of power grid as well as in the research on optimal operation of energy storage system for wind power.
出处 《电网技术》 EI CSCD 北大核心 2014年第9期2416-2421,共6页 Power System Technology
基金 国家自然科学基金项目(51379159) 高等学校博士学科点专项科研基金资助项目(20130141130001)~~
关键词 风电出力 时间序列 时间相关性 概率分布 反变换 wind power generation time series temporal correlation probability distribution inverse transformation
  • 相关文献

参考文献21

  • 1Bouffard F,Galiana F D.Stochastic security for operations planning with significant wind power generation[J].IEEE Transactions on Power Systems,2008,23(2):306-316.
  • 2Papaefthymiou G.Integration of stochastic generation in power systems[D].Delft,The Netherlands:Delft University of Technology,2007.
  • 3Lun Y F I,Lam J C.A study of Weibull parameters using long-term wind observations[J].Renewable Energy,2000(20):145-53.
  • 4Celik A N.Assessing the suitability of wind speed distribution functions based on wind power density[J].Renewable Energy,2003(28):1563-74.
  • 5Boone A.Simulation of short-term wind speed forecast errors using a multi-variate ARMA(1,1) time-series model[D].Stockholm,Sweden:Royal Institute of Technology,2005.
  • 6Bludszuweit H,Domínguez-Navarro J A,Llombart A.Statistical analysis of wind power forecast error[J].IEEE Transactions on Power Systems,2008,23(3):983-991.
  • 7Papaefthymiou G,Klöckl B.MCMC for wind power simulation[J].IEEE Transactions on Energy Conversion,2008,23(1):234-240.
  • 8Shamshad A,Bawadi M A,Majid T A,et al.First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy,2005(30):693-7081.
  • 9Morales J R,Minguez R,Conejo A J.A methodology to generate statistically dependent wind speed scenarios[J].Applied Energy,2010,87(3):843-855.
  • 10Brown B,Katz R,Murphy A.Time series models to simulate and forecast wind speed and wind power[J].Journal of Climate and Applied Meteorology,1984(23):1184-1195.

二级参考文献41

  • 1丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 2SORENSEN P, CUTULULIS N A, VIGUERAS-RODRIGUEZ A, et al. Power fluctuations from large wind farms[J]. IEEE Trans on Power Systems, 2007, 22(3): 958-965.
  • 3European Wind Energy Association. Large scale integration of wind energy in the European power supply: analysis, issues and recommendations[ R ]. Brussels, Belgium: European Wind Energy Association, 2005.
  • 4PARSONS B K, WAN Y, KIRBY B. Wind farm power fluctuations, ancillary services, and system operating impact analysis activities in the United States[C]// Proceedings of the European Wind Energy Conference, July 2-6, 2001, Copenhagen, Denmark.
  • 5BANAKAR H, LUO C L, OOI B T. Impacts of wind power minute-to-minute variations on power system operation [J]. IEEE Trans on Power Systems, 2008, 23(1): 150-160.
  • 6DOHERTY R, O' MALLEY M. A new approach to quantify reserve demand in systems with significant installed wind eapacity[J]. IEEE Trans on Power Systems, 2005, 30(2): 587-595.
  • 7BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A, LLOMBART A. Statistical analysis of wind power forecast error[J]. IEEE Trans on Power Systems, 2008, 23 (3): 983-991.
  • 8PINSONA P, CHRISTENSENA L E A, MADSENA H, et al. Regime-switching modelling of the fluctuations of offshore wind generation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2327-2347.
  • 9BILLINTON R, WANGDEE W. Reliability based transmission reinforcement planning associated with large-scale wind farms[J]. IEEE Trans on Power Systems, 2007, 22(1): 34-41.
  • 10SRENSEN P. Riso energy report 8: flexibility, stability and security of energy supply [R]. Roskilde, Denmark: Riso National Laboratory, 2009:28 -29.

共引文献193

同被引文献183

引证文献16

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部