摘要
电动汽车退运电池的回收利用是新能源可持续发展迫切需要解决的问题,将梯级利用电池储能系统与大功率快速充电站相结合,提出了一种考虑动力电池梯级利用的快速充电站容量优化配置方法。基于快速充电站负荷规律,综合分析梯级利用储能系统建设运维成本、延缓配电网升级改造收益、降低网损收益及移峰填谷等方面的经济价值,建立储能系统的经济效益模型,并引入遗传算法对模型进行优化。算例结果表明,在电动汽车快速充电站配置梯级利用储能系统,可减小变压器容量,能为电网企业带来较好的经济效益。
The recycling of batteries that were out of service is one of problems urgently needed to be solved for sustainable development of new energy resources. Based on the combination of energy storage system composed of second-use batteries with high-power fast charging station, an optimal capacity allocation method of fast charging station, in which the second-use of electric vehicle (EV) batteries is taken into account, is proposed. According to typical load of fast charging station and based on synthetical analysis on the cost for the construction, operation and maintenance of energy storage system composed of second-use batteries and considering the revenue from standing over the upgrading and renovation of distribution network and the economic value from the revenue due to redqcing network loss and peak load shifting, an economic benefit model of the energy storage system composed of second-use batteries is established and solved by genetic algorithm. Cast study results show that allocating energy storage system composed of second-use batteries in EV fast charging station can reduce the capacity of the transformer and bring economic benefit for power grid enterprises.
出处
《电网技术》
EI
CSCD
北大核心
2014年第9期2551-2555,共5页
Power System Technology
基金
"十二五"国家科技支撑计划重大项目(2013BAG10B00)~~
关键词
动力电池
梯级利用
储能
经济效益
遗传算法
electric vehicle battery
second-use
energystorage
economic benefits
genetic algorithm