期刊文献+

输入不确定BELM在发酵过程软测量中的应用 被引量:1

Enter the uncertainty in the fermentation process BELM soft measurement
下载PDF
导出
摘要 为复杂的发酵过程建立软测量模型要求模型最好能够给出预测值的置信区间,以便技术人员对发酵过程的真实状况和模型的可靠性进行评估。贝叶斯极限学习机能够在实现预测的同时一并给出预测值的置信区间,因此将其用于发酵过程的软测量建模。然而,实际发酵过程中的输入数据往往带有噪声,贝叶斯极限学习机仅能处理输出含噪声的情况。针对这个问题,提出了输入不确定贝叶斯极限学习机。在原有的贝叶斯推理过程中引入输入不确定性,得到了综合考虑输入输出噪声的模型参数和预测置信区间。最后利用青霉素发酵过程进行仿真验证,建立了产物质量浓度的软测量模型,结果表明该方法预测精度高,得到的预测置信区间包含了所有真实值。 Soft sensor for fermentation process is better to get the confidence interval of prediction value. So that technical staff can make reasonable evaluation on the real situation of fermentation process. Bayesian extreme learning machine is applied to the soft sensor of fermentation process because it can obtain prediction value and confidence interval at the same time. However, noisy input is not considered by the modeling meth-od based Bayesian extreme learning machine, this is not consistent with real condition. To address this prob-lem, Bayesian extreme learning machine with input uncertainty is proposed. It is a Bayesian extreme learning machine framework which allows for input noise and get the model parameters which are overall consideration of input and output noise as well as confidence interval of prediction. Applying the proposed method to model the penicillin fermentation process, the simulation results show its good prediction accuracy and all of real val-ues are included into the confidence interval.
作者 姚景升 刘飞
出处 《自动化与仪器仪表》 2014年第5期122-126,129,共6页 Automation & Instrumentation
关键词 发酵过程 软测量 极限学习机 贝叶斯模型 输入不确定 置信区间 Fermentation process Soft sensor Extreme learning machine Bayesian Model Input uncer-tainty Confidence interval
  • 相关文献

参考文献10

  • 1Kadlec P, Gabrys B,Strandt S. Data driven soft sensor inthe process industry. Computers and Chemical Engineering,2009,33: 795 - 814.
  • 2Huang G B, Zhu Q Y, Siew C K. Extreme learning ma-chine: theory and applications. Neurocomputing, 2006,70:489-501.
  • 3Huang G B, Zhou H,Ding X, et al. Extreme learning ma-chine for regression and multiclass classification. IEEETrans. Syst. Man Cybem.: Part B, 2012, 42(2):513-529.
  • 4Deng W Y,Zheng Q H, Chen L. Regularized ExtremeLearning Machine. Computational Intelligence and DataMining, 2009.CIDM’ 09. IEEE Symposium on, Xi An:2009: 389-395.
  • 5Emilio S O, Juan G S, Jose D M, et al. BELM : Bayesianextreme learning machine. IEEE Trans on Neural Net-works, 2011, 22(3): 505-509.
  • 6Wright W A. Bayesian approach to neural-network model-ing with input uncertainty. IEEE Trans on Neural Net-works, 1999, 10(6): 1261-1270.
  • 7Yu J. A Bayesian inference based two-stage support vectorregression framework for soft sensor development in batchbioprocesses. Computers and Chemical Engineering, 2012,41: 134-144.
  • 8Chen T, Martin E. Bayesian linear regression and variableselection for spectroscopic calibration. Analytica ChimicaActa,2009,631:13-21.
  • 9Bartlett P L. The sample complexity of pattern classifica-tion with neural networks: the size of the weights is moreimportant than the size of the network. IEEE Trans on Infor-mation Theory, 1998, 44(2): 525-536.
  • 10Hong J J, Zhang J. Quality prediction for a fed-batch fer-mentation process using multi-block PLS. Springer Pro-ceedings in Physics, 2010,135:155-162.

同被引文献7

  • 1KOCA A, OZTOP HF, VAROL Y, KOCA GO. Estimation of so- lar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey [ J ]. Expert Systems with Applications, 2011 ( 38 ) : 8756 - 8762.
  • 2SAYIN C, ERTUNC H M, HOSOZ M, et al. Performance and exhaust emissions of a gasoline engine using artificial neural net- work [ J ]. Applied Thermal Engineering, 2007 ( 27 ) :46 - 54.
  • 3HUANG G B, ZHU Q Y, SIEW C K. Extreme learning ma- chine: theory and applications [ J ]. Neurocomputing, 2006 (70) :489 - 501.
  • 4SORIA - OLIVAS E, GOMEZ - SANCHIS J, MARTIN J D, et al. BELM : bayesian extreme learning machine[ J]. IEEE Trans- actions on Neural Networks, 2011 (22) :505 -509.
  • 5TIPPING M E. Sparse bayesian learning and the relevance vector machine[J~. Journal of Machine Learning Research, 2001 ( 1 ) : 211 -244.
  • 6FENG G R, HUANG G B, LIN Q P, et al. Error minimized ex- treme learning machine with growth of hidden nodes and incre- mental learning [ J 1. IEEE Transactions on Neural Networks, 2009 (20) : 1352 - 1357.
  • 7陆思锡,周庆忠,熊彪.基于支持向量机的舰艇部队作战油料消耗量预测研究[J].物流技术,2013,32(3):468-470. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部