期刊文献+

微博用户信息行为的基本特性研究 被引量:2

On the Basic Characteristics of the Micro-blog User's Information Behavior
下载PDF
导出
摘要 以新浪微博为例,利用实证的方法对微博用户的关注行为、评论行为和转发行为进行分析。研究发现,微博是一个资源丰富、节点较多的有向网络,在用户信息发布中,以电脑和移动终端为主,有向移动化发展的趋势;经济发达地区的微博使用者较不发达地区多,用户的信息发布呈周期性;发布的信息内容以自我为中心,大多是与个人相关的信息或者自己感兴趣的信息。研究结果表明,用户关注、评论与转发行为的网络整体密度较小,但是局部呈聚集的趋势。 Base on the data on Sina weibo,the paper uses empirical methods to analyze micro-blog users' concerned behavior,comments behavior and forwarding behavior,and describes the state of micro-blog overall user behavior in detail,and has a basic understanding for its static behavior. Micro-blog is a directed network with resource-rich and more nodes,more users release information by computers and mobile terminals,and mobiles become more and more popular; the number is bigger in economically developed regions compared with the developing areas; the user's information is self-centered,and the users often publish the information about themselves or what they are interested in. The network of users' concerned behavior,comments behavior and forwarding behavior is less dense as a whole,but partially it tends to gather.
作者 张静 赵玲
出处 《北京航空航天大学学报(社会科学版)》 2014年第1期76-82,88,共8页 Journal of Beijing University of Aeronautics and Astronautics:Social Sciences edition Edition
基金 教育部新世纪人才项目(NCET-10-0264) 国家广电总局社科项目(GDT1231)
关键词 微博 微博用户信息行为 用户关注行为 用户评论行为 用户转发行为 micro-blog micro-blog users' information behavior users' concerned behavior users' comments behavior users' forwarding behavior
  • 相关文献

参考文献9

  • 1Twitter用户数突破5亿大关.成为仅次于Faeehook的第二大社交网站[EB/OL].(2012-07-31)[2013-04-10].http:∥WWW.36kreom/p/141021.html.
  • 2中国互联网络信息中心.第30次中国互联网络发展状况统计报告[EB/OL].2013-01-16.http://ish”e.iask.sina.com.en/ff25463538.html.
  • 3麦田.深入分析twitter:聚焦和扩散[J].信息网络,2009(8):60-62. 被引量:9
  • 4彭兰.微博发展的动力[J].青年记者,2009,(11):53-55.
  • 5李林红,李荣荣.新浪微博社会网络的自组织行为研究[J].统计与信息论坛,2013,28(1):88-94. 被引量:13
  • 6易兰丽.基于人类动力学的微博用户行为统计特征分析与建模研究[D].北京:北京邮电大学,2012.
  • 7Twitter按照关注人数划分的用户趋势图[EB/OL].(2011-04-01)[2013-04-10].http:∥teeh.ifeng.com/internet/detail~2011-04/0I/55069351_0.shtml.
  • 8新浪科技.追随者越多所发Tweet也越多[EB/OL].(2009-06.12)[2013-04-10].http:∥tech.sina.com.cn/i/2009-06-12/16233175010_2.shtml.
  • 9DCCI互联网数据中心.2012年中国微博蓝皮书[EB/OL].http://www.docin.com/p-485636096.html.2012-10-20.

二级参考文献7

共引文献28

同被引文献19

  • 1KEVIN C, VIDYASAGAR P, assessment related frameworks THARAM D. Content quality for social media [ EB/OL ]. [ 2015-06-05 ]. http: //kevinehai. net/wp-eontent/uploads/ 2011/06/content-quality-assessment-related -frameworks -for-so- cial-media, pdf.
  • 2MAIK A, BENNO S, NEDIM L Predicting quality flaws in us- er-generated content: the case of Wikipedia [ C]. SIGIR 12 Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2012: 981-990.
  • 3GHOSH A, MCAFEE P. Incentivizing high-quality user-genera- ted content [ C ] //Proceedings of the 20th International Con- ference on World Wide Web. ACM, 2011: 137-146.
  • 4CARMEL D, ROITMAN H, YOM-TOV E. On the relationship between novelty and popularity of user-generated content [C] //Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM, 2010: 1509- 1512.
  • 5CHEN B C, GUO J, TSENG B, et al. User reputation in a com- ment rating environment [ C ] //Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011 : 159-167.
  • 6KEVIN C, CHEN W, VIDYASAGAR P, et al. Automatically measur/ng the quality of user generated content in forums [M] //AI 2011: Advances in Artificial Intelligence. Springer Berlin Heidelberg, 2011: 51-60.
  • 7RUBINO R, FOSTER J, KALJAHI R S Z, et al. Estimating the quality of translated user-generated content [ C ] //Proceedings of International Joint Conference on Natural Language Processing (IJCNLP), Nagoya, Japan, 2013: 1167-1173.
  • 8AHN D Y, DUAN J A, MELA C F. Managing user generated content [ EB/OLJ. [2015-06-03 I. http ://kelley. iu. edu/BEPP/ documents/Managing% 2011ser% 20Generated% 20Content-% 20Carl% 20Mela. pdf.
  • 9TALIB M R, HIDAYAT S U, SARWAR M U. Predicting web user' s behavior patterns [ J ]. International Journal of Comput- er Science & Mobile Computing, 2014, 3 (8) : 769-773.
  • 10RZESZOTARSKI J. Predicting content quality from user behav- ior [ EB/OL ]. [ 2015-06-02 ]. http: //jeffrz. eom/wp-con- tent/uploads/2013/11/Proposal_JeffRz, pdf.

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部