期刊文献+

乳腺癌组织学分级下目标基因提取及转录调控网络构建 被引量:2

Aimed genes' extraction and construction of transcription regulatory network under different grading levels of breast cancer
下载PDF
导出
摘要 目的乳腺癌类型和分级多样性导致其预后差别显著,探寻乳腺癌不同分级情况下的基因表达差异及调控关系能够为乳腺癌致病机制的发现提供重要依据。方法对不同分级下的乳腺癌基因表达数据利用快速独立成分分析(FastICA)方法提取特征基因,并结合人类蛋白质相互作用(PPI)数据选取目标基因。在此基础上,结合转录因子对靶基因调控的先验信息,利用网络成分分析(NCA)方法对与乳腺癌发病有密切关系的转录因子及其靶基因构建转录调控网络。结果筛选出的基因经过数据库验证与乳腺癌相关的占48.15%,构建的调控网络发现了多个转录因子及靶基因在不同分级情况下的活性变化趋势。结论 FastICA算法结合PPI数据提取目标基因的方法较为有效,通过NCA算法构建的转录调控网络为研究乳腺癌发生发展机制提供了新的方法。 Objective The diversities of breast cancer types and grading levels lead to distinct difference for breast cancer prognosis. Studying the gene difference expression and regulatory relationship among genes under different grading levels of breast cancer could provide an important basis for finding breast cancer pathogenesis. MethodsUsing fast independent component analysis ( FastICA ) method to extract feature genes of gene expression data of breast cancer, and then selected the aimed genes by combining with human protein-protein interaction data ( PPI) . On this basis, introducing prior information which described regulatory relationships about how transcription factors regulated their target genes, we continued to analize transcription factors and their target genes, which were closely associated with the incidence of breast cancer, by using network components analysis method ( NCA) , and then constructed a transcriptional regulatory network. Results Selected aimed gene which was closely associated with breast cancer is about 48.15%, that had been validated by breast cancer database. And from the built regulatory network, found out the activity change trend of multiple transcription factors and their target genes under different grading levels. Conclusion FastICA algorithm combined with PPI data for extracting aimed gene is a relatively ef-fective method. Simultaneously, constructing transcription regulatory network with NCA method provides a novel way for studying progression mechanism of breast cancer.
出处 《安徽医科大学学报》 CAS 北大核心 2014年第10期1365-1370,共6页 Acta Universitatis Medicinalis Anhui
基金 国家自然科学基金(编号:61271446 61003093) 上海市科委青年科技启明星计划(A类)(编号:11QA1402900)
关键词 乳腺癌 基因表达数据 快速独立成分分析 蛋白质相互作用数据 网络成分分析 breast cancer gene expression data fast independent component analysis protein-protein interaction data network component analysis
  • 相关文献

参考文献14

  • 1Contesso G, Mouriesse H, Friedman S, et al. The importance ofhistologic grade in long-term prognosis of breast cancer : a study of1,010 patients, uniformly treated at the Institut Gustave-Roussy[J]. J Clin Oncol, 1987, 5(9) : 1378 -86.
  • 2Hyvarinen A, Oja E. Independent component analysis: algorithmsand applications [J]. Neural Networks, 2000, 13(4-5): 411 -30.
  • 3江丽华,李亦学,刘琪.综合ChIP-chip数据、基因敲除数据和表达谱数据重构基因调控网络[J].生物化学与生物物理进展,2010,37(9):996-1005. 被引量:6
  • 4Engin H B, Guney E, Keskin 0, et al. Integrating structure toprotein-protein interaction networks that drive metastasis to brainand lung in breast cancer [ J ]. PLoS One,2013, 8 (11〉:e81035.
  • 5Beisser D, Klau G W, Dandekar T, et al. BioNet: an R-Packagefor the functional analysis of biological networks [ J]. Bioinformat-ics,2010,26(8): 1129-30.
  • 6Seok J, Xiao W, Moldawer L L,et al. A dynamic network of tran-scription in LPS-treated human subjects [ J]. BMC Syst Biol,2009, 3: 78.
  • 7Harris M A,Claric J,Ireland A, et al. The Gene Ontology (GO)database and informatics resource [ J]. Nucleic Acids Res,2004,32(Database issue) : D258 -61.
  • 8Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia ofgenes and genomes [ J]. Nucleic Acids Res, 1999, 27(1) : 29 -34.
  • 9Mosca E, Alfieri R, Merelli I, et al. A multilevel data integrationresource for breast cancer study [ J]. BMC Syst Biol, 2010, 4:76.
  • 10Bonte D, Lindvall C, Liu H, et al. Cdc7-Dbf4 kinase overexpres-sion in multiple cancers and tumor cell lines is correlated with p53inactivation [J]. Neoplasia, 2008, 10(9) : 920-31.

二级参考文献27

  • 1Kauffrnan S. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theoretical Biology, 1969, 22(3): 437- 467.
  • 2Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Computational Biology, 2000, 7(3-4): 601-620.
  • 3Segal E, Shapira M, Regev A, et al. Module networks: Discovering regulatory modules and their condition specific regulators from gene expression data. Nature Genetics, 2003, 34(2): 166-176.
  • 4Blanchette M, Bataille A, Chela X, et al. Oenome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Research, 2006, 16(5): 656-668.
  • 5Bar-Joseph Z, Gerber G, Lee T, et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21(11): 1337-1342.
  • 6Lemmens K, Dhollander T, De Bie T, et al. Inferring transcriptional modules from ChiP-chip, motif and microarray data. Genome Biology, 2006, 7(5): R37.
  • 7Chen G, Jensen S, Stoeckert Jr C. Clustering of genes into regulons using integrated modeling-COGRIM. Genome Biology, 2007, 8(1): R4.
  • 8Gilchrist D, Fargo D, Adelman K. Using ChiP-chip and ChlP-seq to study the regulation ofgene expression: Genome-wide localization studies reveal widespread regulation of transcription elongation. Methods, 2009, 48(4): 398-408.
  • 9Cheng H, Jiang L H, Liu Q, et al. Inferring transcriptional interactions by the optimal integration of ChiP-chip and Knock-out data. Bioinformatics and Biology Insights, 2009, 3:129-140.
  • 10Teixeira M C, Monteiro P, Jain P, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae, Nucl Acids Res, 2006, 34(Database issue): D446-D451.

共引文献5

同被引文献23

  • 1Narod S A, Sa/mena L. BRCA1 and BRCA2 mutations and breast cancer[J]. Discov Med,2011,12 (66) :445 - 53.
  • 2Irminger-Finger I, Siegel B D, leung W C. The functions of breast cancer susceptibility genel ( BRCA1 ) product and its associated proteins [J]. Biol Chem, 1999, 380(2) :117 -28.
  • 3Cleator S, Heller W, Coombes R C. Triple-negative breast cancer : therapeutic options[ J ]. Lancet Onco1,2007,8 ( 3 ) :235 - 44.
  • 4E1-Zaemey S, Nagi N, Fritschi L, et al. Breast cancer among Yemeni women using the National Oncology Centre Registry 2004 - 2010 [J]. Cancer Epidemio1,2012,36 ( 3 ) :249 - 53.
  • 5Kwon J S, Gutierrez-Barrera A M, Young D, et al. Expanding the criteria for BRCA mutation testing in breast cancer survivors [ J ]. J Clin Oncol,2010,28 (27) :4214 - 20.
  • 6Young S R, Pilarski R T, Donenberg T, et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer [J]. BMC Cancer,2009,9:86.
  • 7Levanat S, Cvok M L. Molecular basis of breast cancer related to BRCA1 and BRCA2 genes: characteristics and targeting therapy[J]. Liiec Viesn.2010.132( 1 -2) :34 -7.
  • 8HE Zhiguo,YANG Xiaoli.Research on Feature Extraction Method for Handwritten Chinese Character Recognition Based on Kernel Independent Component Analysis[J].Research Journal of Applied Sciences,Engineering and Technology,2013,6(7):774-776.doi:10.2144/000112950.
  • 9CHEN X,XUAN J,WANG C,et al.Reconstruction of Transcriptional Regulatory Networks by Stability-based Network Component Analysis[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics(TCBB),2013,10(6):1347-1358.doi:10.1109/TCBB.2012.146.
  • 10JAGER R,GISSLINGER H,PASSAMONTI F,et al.Deletions of the Transcription Factor Lkaros in Myeloproliferative Neoplasms[J].Leukemia,2010,24(7):1290-1298.doi:10.1038/leu.2010.99.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部