期刊文献+

利用Flo1p锚定蛋白在酿酒酵母表面展示三种纤维素酶的纤维素乙醇发酵 被引量:3

Display cellulolytic enzymes on Saccharomyces cerevisiae cell surface by using Flo1p as an anchor protein for cellulosic ethanol production
原文传递
导出
摘要 为了简化纤维素乙醇生产工艺,实现纤维素利用与乙醇发酵的同步进行,通过酵母细胞表面展示技术,以酿酒酵母菌株Saccharomyces cerevisiae Y5为受体,通过絮凝素(Flo1p)锚定方式,将来自丝状真菌里氏木霉Trichoderma reesei的内切葡聚糖酶Ⅱ(EGII)、纤维二糖水解酶Ⅱ(CBHII)以及来自棘孢曲霉Aspergillus aculeatus的β-葡糖苷酶Ⅰ(BGLI)展示在细胞表面,构建同时表达3种纤维素酶的酵母菌群系统。经过免疫荧光验证展示酶的细胞蛋白定位,酶活测定,乙醇发酵性能验证,结果表明:展示表达的3种纤维素酶具有良好的稳定性和功能活性;在EGII、CBHII和BGLI协同作用下重组酵母菌株能够水解溶胀磷酸纤维素(Phosphoric acid swollen cellulose,简称PASC)并产生乙醇,乙醇浓度达到最大值0.77 g/L,乙醇产量为0.35 g/g,相当于理论值的68.6%。本研究成功构建了利用Flo1p作为锚定蛋白的絮凝素展示系统,初步实现了纤维素利用与乙醇发酵的同步进行,为利用酿酒酵母表面展示技术固定并表达纤维素酶提供了一定的理论依据。 In this study, we constructed a yeast consortium surface-display expression system by using Flol as an anchor protein. Endoglucanase Ⅱ (EGⅡ) and cellobiohydrolaseⅡ (CBHⅡ) from Trichoderma reesei, and β-glucosidase 1 (BGLI) from Aspergillus aculeatus were immobilized on Saccharomyces cerevisiae Y5. We constructed the cellulose-displaying expression yeast consortium (Y5/fEGII:Y5/fCBHII:Y5/fBGLI=1:1:1) and investigated the enzymatic ability and ethanol fermentation. The displayed cellulolytic enzymes was stabile during the 96-h fermentation. The yeast consortium produced 0.77 g/L ethanol from 10 g/L phosphoric acid swollen cellulose (PASC) within 96 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.35 g/g, which correspond to 68.6% of the theoretical yield.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第9期1401-1413,共13页 Chinese Journal of Biotechnology
基金 国家科技支撑计划(No.2013BAD22B03) 国家自然科学基金(No.31100578) 北京市教育委员会科技计划重点项目(No.KZ201310028034)资助~~
关键词 细胞表面展示 Flo1锚定蛋白 酵母菌群 纤维素乙醇 cell surface display, Flo 1 protein, yeast consortium, cellulosic ethanol
  • 相关文献

参考文献26

  • 1Hawkins GM, Doran-Peterson J. A strain ofSaccharomyces cerevisiae evolved forfermentation of lignocellulosic biomass displaysimproved growth and fermentative ability in highsolids concentrations and in the presence ofinhibitory compounds. Biotechnol Biofuels,2011,4(1):1-14.
  • 2Fujii T, Yu Gs Matsushika A, et al. Ethanolproduction from xylo-oligosaccharides byxylose-fermenting saccharomyces cerevisiaeexpressing p-xylosidase. Biosci BiotechnolBiochem,2011,75(6):1140-1146.
  • 3Shibasaki S,Maeda Hs Ueda M. Molecular displaytechnology using yeast-arming technology. AnalSci,2009,25(1):41-49.
  • 4Kondo A, Ueda M. Yeast cell-surfacedisplay-applications of molecular display. ApplMicrobiol Biotechnol,2004,64(1):28-40.
  • 5Sato N, Matsumoto T, Ueda M, et al. Long anchorusing Flol protein enhances reactivity of cellsurface-displayed glucoamylase to polymersubstrates. Appl Microbiol Biotechnol,2002,60(4):469-474.
  • 6Matsumoto T, Fukuda H,Ueda M, et al.Construction of yeast strains with high cell surfacelipase activity by using novel display systems basedon the Flolp flocculation functional domain. ApplEnviron Microbiol,2002,68(9):4517-4522.
  • 7Fukuda T, Tsuchiyama K, Makishima Hs et al.Improvement in organophosphorus hydrolaseactivity of cell surface-engineered yeast strainusing Flolp anchor system. Biotechnol Lett,2010,32(5):655-659.
  • 8Fujita Y, Ito J, Ueda M, et al. Synergisticsaccharification, and direct fermentation to ethanol,of amorphous cellulose by use of an engineeredyeast strain codisplaying three types of cellulolyticenzyme. Appi Environ Microbiol,2004,70(2):1207-1212.
  • 9Yanase S,Hasunuma T, Yamada R5 et al. Directethanol production from cellulosic materials at hightemperature using the thermotolerant yeastKluyveromyces marxianus displaying cellulolyticenzymes. Appl Microbiol Biotechnol,2010,88(1):381-388.
  • 10Baek SH, Kim S, Lee K,et al. Cellulosic ethanolproduction by combination of cellulase-displayingyeast cells. Enzyme Microb Technol,2012,51(6/7):366-372.

同被引文献49

  • 1曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7):1098-1108. 被引量:81
  • 2Kerr RA. World oil crunch looming[J]. Science, 2008, 322(5905) 1178-1179.
  • 3Hasunuma T, Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains[J]. ProcessBiochemistry, 2012, 47(9): 1287-1294.
  • 4La Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms[J]. Applied Microbiology and Biotechnology, 2010, 87(4): 1195-1208.
  • 5Zhang XZ, Zhang YH. One-step production of biocommodities from lignocellulosie biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges[J]. Engineering in Life Sciences, 2010, 10(5): 398-406.
  • 6Olson DG, McBride JE, Shaw AJ, et al. Recent progress in consolidated bioprocessing[J]. Current Opinion in Biotechnology, 2012, 23(3): 396-405.
  • 7van Zyl WH, Lynd LR, den Haan R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae[A]//Olsson L. Biofuels[M]. Berlin: Springer Berlin Heidelberg, 2007:205-235.
  • 8Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering[J]. Biotechnology Advances, 2012, 30(6): 1207-1218.
  • 9Lau MW, Gunawan C, Balan V, et al. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production[J]. Biotechnology for Biofuels, 2010, 3:11.
  • 10Olsson L, Hahn-Hiigerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates[J]. Process Biochemistry, 1993, 28(4): 249-257.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部