期刊文献+

一种考虑路径影响的剪切式多轴疲劳寿命模型 被引量:3

New Multiaxial Fatigue Life Prediction Model with Shear Form Based on the Strain Path
下载PDF
导出
摘要 大量的试验证明,在相同等效应变条件下,多轴非比例加载下的疲劳寿命往往要远远低于多轴比例加载下的寿命。因此基于临界平面法,提出一种考虑加载路径影响的多轴疲劳剪切式寿命模型。该寿命模型以最大损伤平面为临界平面,并以临界平面上的正应变幅值,切应变幅值,平均静水应变以及一种加载路径影响因子作为主要损伤变量。其中,通过引入一种加载路径影响因子来考虑多轴非比例加载对多轴疲劳寿命的锐减程度影响。同时,借助平均静水应变这一损伤变量对多轴加载中的平均应变或应力影响进行修正。该模型不含任何材料参数,便于工程应用。根据已有4种材料的多轴疲劳试验数据对该新模型的有效性与适应范围进行了验证。 Many experimental data have demonstrated that the fatigue life under non-proportional loading, under the same equivalent strain, is far less than that under proportional loading. Therefore, based on the critical plane, a new multiaxial fatigue life prediction model as shear form based on the strain path is proposed. The maximum damage plane is defined as the critical plane and this model consists of four main damage parameters:normal and shear strain amplitudes on the critical plane, mean hydrostatic strain and a path-dependent factor. The path-dependent factor is presented to consider the influence of non-proportional loading. Meanwhile, the effect of the mean strain is corrected by the mean hydrostatic strain. It does not include any material constant which is very convenient for engineering design. Four kinds of materials are used to demonstrate the accuracy of the presented model.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第16期21-26,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(11172096) 国家自然科学优秀青年基金(51222502) 全国优博专项资金(201235) 装备预先研究(62501036012)资助项目
关键词 临界平面法 多轴疲劳 寿命模型 加载路径影响因子 平均静水应变 critical plane method multiaxial fatigue life prediction model path-dependent factor mean hydrostatic strain
  • 相关文献

参考文献18

  • 1KAROLCZUK A,MACHA E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J].International Journal of Fracture,2005,134:267-304.
  • 2BROWN M W,MILLER K J.A theory for fatigue failure under multiaxial stress-strain conditions[J].Proc.Inst.Mech.Engng.,1973,187:745-755.
  • 3WANG C H,BROWN M W.A path-independent parameter for fatigue under proportional and non-proportional loading[J].Fatigue Fract.Engng.Mater.Struct.,1993,16:1285-1298.
  • 4SHANG D G,WANG D J.A new multiaxial fatigue damage model based on the critical plane approach[J].International Journal of Fatigue,1998,20:241-245.
  • 5WANG Y Y,YAO W X.A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading[J].International Journal of fatigue,2006,28:401-408.
  • 6杨俊,李承彬,谢寿生.基于最大损伤临界平面多轴疲劳寿命预测方法[J].航空动力学报,2011,26(12):2783-2790. 被引量:4
  • 7FATEMI A,SOCIE D F.A Critical plane approach to multiaxial fatigue damage including out of plane loading [J].Fatigue Fract.Engng.Mater.Struct.,1988,14: 149-165.
  • 8SHUKAYEV S.Deformation and life of titanium alloy BT9 under conditions of nonproportional low-cycle loading [J].Strength Mater.,2001,33:333-338.
  • 9WALAT K,KUREK M,OGONOWSKI P,et al.The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range [J].International Journal of Fatigue,2012,37:100-111.
  • 10ITOH T,NAKATA T,SAKANE M,et al.Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths [C]//Proceedings of Fifth International Conference Biaxial/Multiaxial Fatigue and Fracture,TU Opole,Cracow,8-12 September,1997:173-187.

二级参考文献29

  • 1WangLei WangDejun.LIFE PREDICTION APPROACH FOR RANDOM MULTIAXIAL FATIGUE[J].Chinese Journal of Mechanical Engineering,2005,18(1):145-148. 被引量:7
  • 2ZHANG Guoqing PU Gengqiang WANG Chengtao.FATIGUE LIFE PREDICTION OF CRANKSHAFT MADE OF MATERIAL 48MnV BASED ON FATIGUE TESTS,DYNAMIC SIMULATION AND FEA[J].Chinese Journal of Mechanical Engineering,2006,19(2):307-311. 被引量:13
  • 3钱文学,尹晓伟,谢里阳,何雪浤.轮盘疲劳可靠性分析的Monte-Carlo数字仿真[J].系统仿真学报,2007,19(2):254-256. 被引量:16
  • 4Fatemi A,Socie D F. Critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 1988,11(3) : 149-165.
  • 5Chen X,Gao Q,Sun X F. Damage analysis of low cycle fa- tigue under non-proportional loading[J]. International Jour- nal of fatigue, 1994,16(3) : 221-225.
  • 6Chen X,Gao Q,Sun X F. Low-cycle fatigue under non-pro- portional loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 1996,19(7) :839-854.
  • 7Chert X, An K, Kim K S. Low-cycle fatigue of 1Cr-18Ni- 9Ti stainless steel and related weld metal under axial, tor- sional and 90°out-of-phase loading[J]. Fatigue and Frac- ture of Engineering Materials and Structures, 2004,27 (6) : 439-448.
  • 8You B R, Lee S B. A critical review on multiaxial fatigue assessments of metals [J]. International Journal of Fa- tigue,1996,18(4) : 235-244.
  • 9Papadopoulos I V, Davoli P, Gorla C, et al. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue, 19 9 7,19 ( 3 ) : 219-2 3 5.
  • 10Macha E, Sonsino C M. Energy criteria of multiaxial fa- tigue failure[J]. Fatigue and Fracture of Engineering Ma- terials and Structures, 1999,22 (12) : 1053-1070.

共引文献23

同被引文献40

  • 1彭立强,王健.涡轮叶片高温多轴低周疲劳/蠕变寿命研究[J].航空动力学报,2009,24(7):1549-1555. 被引量:12
  • 2陈旭,许爽燕.多轴低周疲劳研究现状[J].压力容器,1997,14(3):58-61. 被引量:12
  • 3Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress-strain conditions. Proc lnst Mech Engng , 1973, 187:745-755.
  • 4Kandil FA, Brown MW, Miller KJ. Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. The Metal Society, 1982, London, 280:203-210.
  • 5Fatemi A, Socie DE A critical plane approach to multiaxial fatigue damage including out of plane loading. Fatigue Fract Engng Mater Struct, 1988, 14:149-165.
  • 6Wang CH, Brown MW. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract En- gng Mater Struct, 1993, 16(12): 1285-1298.
  • 7Kanazawa K, Miller KJ, Brown M. Low cycle fatigue under out- of-phase loading conditions. Journal of Engineering Materials and Technology, 1977, 99(3): 222-228.
  • 8Shamsaei N, Fatemi A. Effect of micros:ucmre and hardness on non-proportional cyclic hardening coefficient and predictions. Ma- terials Science and Engineering A, 2010, 527(12): 3015-3024.
  • 9Itoh T, Nakata T, Sakane M, et al. Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths. European Structural Integrity Society, 1999, 25:41-54.
  • 10Ellyin E Xia Z. A rate-independent constitutive model for transient non-proportional loading. Journal of the Mechanics and Physics of Solids, 1989, 37(1): 71-91.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部