期刊文献+

高阶核函数的性质及其在灵敏度分析中的应用 被引量:2

High Order Properties of Kernel Functions and Their Application in Sensitivity Analysis
下载PDF
导出
摘要 灵敏度信息能够反映基本变量分布参数对结构系统失效概率及输出性能分布函数的影响程度信息,而核函数对于解析求得灵敏度具有很大的作用。因此为得到高精度的失效概率及分布函数灵敏度解析解,推导出正态变量情况下核函数的高阶性质,利用这些核函数的高阶性质以及结构失效概率与输出性能分布函数的关系,解析地求得了二次不含交叉项多项式功能函数在考虑前四阶矩条件下的失效概率和分布函数灵敏度。算例中数值仿真结果与解析结果的对比表明,利用核函数的高阶性质,采用四阶矩法比二阶矩法具有更高的灵敏度分析精度,算例结果同时也证明了所推导的失效概率及分布函数灵敏度表达式的正确性,同时也说明了所提方法具有一定的工程适用性。 Sensitivity analysis can reflect how the distribution parameters of basic variables affect the failure probability and the distribution function of the structure or system output, and the kernel functions play a significant role in getting the sensitivities. So in order to obtain more accurate analytical results of the sensitivities, the high order properties of the kernel functions for the normal variables are derived. Based on the properties of the kernel functions and the relationship between the failure probability and the distribution function, and by taking a quadratic polynomial without cross-terms as an example of a performance function,the analytical sensitivity solutions of the failure probability and the distribution function are derived when considering the first forth-order moments. Comparing the numerical simulation results with the analytical results, it demonstrates that the forth-order moment method is more precise than the second-order method in sensitivity analysis, and that the derived analytical sensitivity expressions are correct, besides, it well shows good application of the proposed method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第16期27-32,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51175425)
关键词 核函数 可靠性灵敏度 统计矩 分布函数 分布参数 kernel function reliability sensitivity statistical moment distribution function distribution parameter
  • 相关文献

参考文献10

  • 1宋述芳,吕震宙.基于马尔可夫蒙特卡罗子集模拟的可靠性灵敏度分析方法[J].机械工程学报,2009,45(4):33-38. 被引量:30
  • 2KREINRR J H.PUTSHA C S.Safety analysis of tension elements using various reliability methods[C]//IEEE,Proceedings of ISUMA-NAFIPS, 1995:758-763.
  • 3ROSENBLUTH E.Two-point estimates in probability[J].Applied Mathematical Modeling,1981, 5(5):329-335.
  • 4MILLWATER H.Universal properties of kernel functions for probabilistic sensitivity analysis[J].Probabilistic Engineering Mechanics, 2009, 24:89-99.
  • 5王奇,吕震宙,崔利杰.核函数的性质及其在灵敏度分析上的应用[J].西北工业大学学报,2010,28(5):797-802. 被引量:5
  • 6RAJASHEKHAR M R, ELLINGWOOD B R.A new look at the response surface approach for reliability analysis[J].Structural Safety, 1993(12):205-220.
  • 7LU Z Z, SONG J.Reliability sensitivity by method of moments[J].Applied Mathematical Modeling,2010, 34:2860-2871.
  • 8ZHAO Y G , ONE T.On the problems of the fourth-moment method[J].Structural Safety, 2004, 26:343-347.
  • 9ZHAO Y G , ONE T.Applicable range of the fourth-moment method for structural reliability[J].Journal of Asian Architecture and Building Engineering, 2007, 6:151-158.
  • 10SEO H S, KWAK B M.Efficient statistical tolerance analysis for general distributions using three-point information[J].International Journal of Production Research, 2002,40(4):931-944.

二级参考文献17

  • 1宋述芳,吕震宙.高维小失效概率可靠性分析的序列重要抽样法[J].西北工业大学学报,2006,24(6):782-786. 被引量:8
  • 2MELCHERS R E, AHAMMED M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Computers and Structures, 2004, 82(1): 55-61.
  • 3AHAMMED M, MELCHERS R E. Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis[J]. Reliability Engineering and System Safety, 2006, 91(5): 594-601.
  • 4WU Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA Journal, 1994, 32(8): 1 717-1 723.
  • 5WU Y T, SITAKANTA M. Variable screening and ranking using sampling-based sensitivity measures[J]. Reliability Engineering and System Safety, 2006, 91 (6):634-647.
  • 6AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
  • 7KOUTSOURELAKIS P S, PRADLWARTER H J, SCHUELLER G I. Reliability of structures in high dimensions[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 409-423.
  • 8CHING J, BECK J L, AU S K. Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation[J]. Probabilistic Engineering Mechanics, 2005, 20(3):199-214.
  • 9AU S K. Reliability-based design sensitivity by efficient simulation[J]. Computers and Structures, 2005, 83(14): 1 048-1 061.
  • 10Kreiner J H, Puteha C S. Safety Analysis of Tension Elements Using Various Reliability Methods. Proceedings of ISUMA- NAFIPS, 1995.

共引文献33

同被引文献30

  • 1刘遵雄,张德运,孙钦东,徐征.基于相关向量机的电力负荷中期预测[J].西安交通大学学报,2004,38(10):1005-1008. 被引量:22
  • 2Hasofer A M. Modern sensitivity analysis of the CESARE-Risk computer fire model[J]. Fire safety journal, 2009, 44(3): 330-338.
  • 3Helton J C, Johson J D, Sallaberry C J, Storlie C B. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1175-1209.
  • 4Saltelli A, Marivoet J. Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J]. Reliability Engineering & System Safety, 1990, 28(2): 229-253.
  • 5Iman R L, Hora S C. A robust measure of uncertainty importance for use in fault tree system analysis[J]. Risk Analysis, 1990, 10(3): 401-406.
  • 6Sobol’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280.
  • 7Borgonovo E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784.
  • 8Liu H B, Chen W, Sudjianto A. Relative entropy based method for probabilistic sensitivity analysis in engineering design[J]. Journal of Mechanical Design, 2006, 128(2): 326-336.
  • 9Ge Q, Ciuffo B, Menendez M. Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs[J]. Reliability Engineering & System Safety, 2015, 134: 334-344.
  • 10Blatman G, Sudret B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2010, 95(11): 1216-1229.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部