期刊文献+

有限元法初步探讨釉牙本质界对裂纹的阻断机制 被引量:3

Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method
下载PDF
导出
摘要 目的通过有限元方法计算裂纹扩展过程中裂纹尖端应力强度因子的变化和裂纹扩展的路径。方法用ANSYS软件建立釉牙本质界结构的有限元模型,在模型的单边缘设置长度为0.1 mm的初始裂纹,该数值试样的底端固定,顶端受有б=1 MPa的均匀拉伸载荷,加载频率为5 Hz。利用ANSYS软件计算裂纹在扩展过程中裂纹尖端的应力强度因子和裂纹在扩展过程中的偏斜角度。结果裂纹到达釉牙本质界时应力强度因子会突然降低并且在釉牙本质界内随裂纹的延伸而降低。裂纹在釉质和牙本质内的偏斜角度小于15°,当裂纹扩展到釉牙本质界时会出现大的偏斜角度,裂纹尖端出现应力降低的现象。结论由于裂纹尖端应力强度因子在釉牙本质界处的降低以及裂纹偏斜,釉牙本质界可能具有阻断裂纹扩展的作用。 Objective This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. Methods The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, defl ection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. Results The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. Conclusion The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2014年第5期464-466,共3页 West China Journal of Stomatology
基金 国家自然科学基金资助项目(30872871)
关键词 釉牙本质界 有限元 应力强度因子 裂纹扩展 dentino-enamel junction finite element stress intensity factor crack propagation
  • 相关文献

参考文献7

  • 1王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社,1989.248-249.
  • 2Xu HH, Smith DT, Jahanmir S, et al. Indentation damageand mechanical properties of human enamel and dentin[J].J Dent Res’ 1998’ 77(3):472-480.
  • 3Giannini M, Soares CJ, de Carvalho RM. Ultimate tensilestrength of tooth structures[J]. Dent Mater, 2004, 20(4):322-329.
  • 4Tracey DM, Cook TS. Analysis of power type singularitiesusing finite elements[J]. Int J Numer Meth Eng, 1977,11(8):1225-1233.
  • 5Cloitre T, Panayotov IV, Tassery H, et al. Multiphoton ima-ging of the dentine-enamel junction[J]. J Biophotonics, 2013,6(4):330-337.
  • 6Bhaskar SN. Orban’s oral histology and embryology[M].11th ed. Chicago: Mosby Year Book, 1990:70-71.
  • 7Dong XD, Ruse ND. Fatigue crack propagation path acrossthe dentinoenamel junction complex in human teeth[J]. JBiomed Mater Res A, 2003,66(1):103-109.

共引文献25

同被引文献34

  • 1曾艳,王嘉德.下颌第一恒磨牙三维有限元模型的建立及应力分析[J].中华口腔医学杂志,2005,40(5):394-397. 被引量:15
  • 2陈琼.三维有限元建模方法的研究现状[J].口腔医学,2006,26(2):154-155. 被引量:34
  • 3钱蕴珠,李建.牙尖斜度对上颌第一磨牙牙体应力分布的影响[J].实用口腔医学杂志,2007,23(2):256-259. 被引量:37
  • 4马淑媛,蔡继业,吴扬哲,詹欣文.原子力显微镜对牙体硬组织的纳米结构分析[J].中国组织工程研究与临床康复,2007,11(18):3536-3539. 被引量:6
  • 5Schmidt C W. On the relationship of dental microwear to dental macrowear [ J]. Am J Phys Anthropol, 2010, (142) :67-73.
  • 6Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis [J]. Indian J Dent Res, 2010, 21(3) : 425-432.
  • 7Ehsani S, Mirhashemi F S, Asgary S. Finite element re- construction of a mandibular first molar [ J ]. Iran Endod J, 2013, 8(2) : 44-47.
  • 8Chang K H, Magdum S, Khera S C. An advanced ap- proach for computer modeling and prototyping of the hu- man tooth [J]. Ann Biomed Eng, 2003, 31 (5): 621-631.
  • 9Dejak B, Mlotkowski A, Romanowicz M. Finite element analysis of mechanism of cervical formation in simulated molars during mastication and paratunction [J]- J Pros- thet Dent, 2005, 94: 520-529.
  • 10Benazzi S, Kullmer O, Grosse I R. Using oeclusal wear information and finite element analysis to investigate stress distributions in human molars[ J]. J Anat, 2011, 219 : 259-272.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部