期刊文献+

白念珠菌唑类药物耐药相关转录因子研究进展 被引量:3

Progress on the transcription factors associated with azole resistance in Candida albicans
下载PDF
导出
摘要 近年来白念珠菌的感染率呈逐年上升趋势,随着唑类药物的广泛应用,耐药菌株不断增多,已成为临床治疗的一大难题。白念珠菌的耐药机制主要与ERG11基因的突变和过表达、药物外排泵相关基因表达增多及生物膜的形成等有关,由于转录因子是耐药基因表达的关键调节因子,关于锌簇转录因子与耐药关系的研究越来越多,如TAC1、MRR1、MRR 2、UPC 2、NDT 80等,其点突变可引起某些耐药基因的过表达而介导耐药,该领域研究已成为热点,该文就此研究进展做一概述。 Lately, the rate of Candida albicans infection kept increasing, more and more resistant strains had been detected with the wide use of azoles. Sogreat challenge had been brought to clinical treatment. Some molecular mechanisms associated with azole resistance had been described, including the point mutation , overexpression of target enzyme, increased expression of efflux pump and the formation of biofilm. Since the transcription factors could regulate the expression of drug resistance genes, more and more at- tention has been paid to the contribution of zinc cluster transcription factors to drug resistance, such as TAC 1, MRR 1, MRR 2, UPC 2, NDT 80, and so on. Lots of researches revealed that the point mutations of transcription factors could cause overexpression of their regulated resistance genes and finally led to drug resistance. The review focused on the research progress of the transcription factors.
出处 《中国真菌学杂志》 CSCD 2014年第4期241-244,240,共5页 Chinese Journal of Mycology
基金 黄浦区卫生局项目(2012-HGG-44) 上海市重点专科配套课题(ZK2012A21)
关键词 白念珠菌 耐药机制 TAC1 MRR1 UPC2 NDT80 Candida albicans drug resistance mechanisms TA C 1 MRR 1 UPC 2 NDT 80
  • 相关文献

参考文献32

  • 1Chau AS,Mendrick CA,Sabatelli FJ,et al.Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles[J].Antimicrob Agents Chemother,2004,48 (6):2124-2131.
  • 2Eddouzi J,Parker JE,Vale-Silva LA,et al.Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals[J].Antimicrob Agents Chemother,2013,57(7):3182-3193.
  • 3Chandra J,Kuhn DM,Mukherjee PK,et al.Biofilm formation by the fungal pathogen Candida albicans:development,architecture,and drug resistance[J].J Bacteriol,2001,183(18):5385-5394.
  • 4Cowen LE,Lindquist S.Hsp90 potentiates the rapid evolution of new traits:drug resistance in diverse fungi[J].Science,2005,309(5744):2185-2189.
  • 5Coste A,Turner V,lscher F,et al.A mutation in Tac1p,a transcription factor regulating CDR 1 and CDR 2,is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J].Genetics,2006,172 (4):2139-2156.
  • 6Liu TT,Znaidi S,Barker KS,et al.Genome-wide expression and location analyses of the Candida albicans Tac1 p regulon[J].Eukaryotic cell,2007,6(11):2122-2138.
  • 7Coste AT,Crittin J,Bauser C,et al.Functional analysis of cisand trans-acting elements of the Candida albicans CDR 2 promoter with a novel promoter reporter system[J].Eukaryotic cell,2009,8(8):1250-1267.
  • 8Morio F,Pagniez F,Besse M,et al.Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC 1,MRR 1 and UPC 2 in a set of fluconazole-resistant clinical isolates of Candida albicans[J].Int J Antimicrob Agents,2013,42(5):410-415.
  • 9Rustad TR,Stevens DA,Pfaller MA,et al.Homozygosity at the Candida albicans MTL locus associated with azole resistance[J].Microbiology,2002,148(4):1061-1072.
  • 10Coste A,Selmecki A,Forche A,et al.Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates[J].Eukaryotic cell,2007,6(10):1889-1904.

同被引文献36

  • 1Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections [ J ]. Int J Microbiol, 2012 : 1-26.
  • 2Khodavandi A, Alizadeh F, Vandan VA, et al. Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans [ J]. Pharm Biol,2014,52(12) :1505-1509.
  • 3Chen LM, Xu YH, Zhou CL, et al. Overexpression of CDR1 and CDR2 genes plays an important role in flucon- azole resistance in Candida albicans with G487T and T916C mutations[J]. J Int Med Res,2010,38(2):536- 545.
  • 4Cannon RD, Lamping E, Holmes AR,et al. Efflux-medi- ated antifungal drug resistance [ J]. Clin Microbiol Rev, 2009,22 ( 2 ) : 291-321.
  • 5Holmes AR, Keniya MV, Ivnitski-Steele I, et al. The monoamine oxidase A inhibitor clorgyline is a broad-spec- trum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Can- dida albicans and Candida glabrata clinical isolates [ J l- Antimicrob Agents Chemother ,2012,56 ( 3 ) : 1508-1515.
  • 6Sehuetzer-Muehlbauer M, Willinger B, Egner R, et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast[ J ]. Int J Antimicrob Agents, 2003,22 ( 3 ) : 291- 300.
  • 7Guillon R, Pagniez F, Giraud F, et al. Design, synthe- sis, and in vitro antifungal activity of 1-[ (4-substituted- benzyl ) methylamino 1-2-( 2,4-difluorophenyl ) -3-( 1 H-l, 2,4-triazol -1-yl) propan-2-ols [ J ]. Chem Med Chem, 2011,6(5) :816-825.
  • 8Maurya IK, Thota CK, Verma SD, et al. Rationally de- signed transmembrane peptide mimics of the muhidrug transporter protein Cdrl act as antagonists to selectively block drug efflux and chemosensitize azole-resistant clini- cal isolates of Candida albicans [ J 1. J Biol Chem,2013, 288 (23) : 16775-16787.
  • 9Calabrese EC, Castellano S, Santoriello M, et al. Anti-fungal activity of azole compounds CPA18 and CPA109 a- gainst azole-susceptible and-resistant strains of Candida albicans [ J ]. J Antimicrob Chemother, 2013,68 ( 5 ) : 1111-1119.
  • 10Zhu SL, Yah L, Zhang YX, et al. Berberine Inhibits Flu- phenazine-Induced Up-Regulation of CDRlin Candida al- bican[J]. Biol Pharm Bu11,2014,37(2) :268-273.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部