期刊文献+

EXISTENCE OF MULTIPLE SOLUTIONS TO A FRACTIONAL DIFFERENCE BOUNDARY VALUE PROBLEM WITH PARAMETER 被引量:1

EXISTENCE OF MULTIPLE SOLUTIONS TO A FRACTIONAL DIFFERENCE BOUNDARY VALUE PROBLEM WITH PARAMETER
原文传递
导出
摘要 By establishing the corresponding variational framework, and using critical point theory, we give the existence of multiple solutions to a fractional difference boundary value problem with parameter. Under some suitable assumptions we obtain some results which ensure the existence of well precise interval of parameter for which the problem admits multiple solutions. By establishing the corresponding variational framework, and using critical point theory, we give the existence of multiple solutions to a fractional difference boundary value problem with parameter. Under some suitable assumptions we obtain some results which ensure the existence of well precise interval of parameter for which the problem admits multiple solutions.
机构地区 Dept. of Math.
出处 《Annals of Differential Equations》 2014年第3期301-311,共11页 微分方程年刊(英文版)
基金 supported by the National Natural Science Foundation of China(11161049)
关键词 fractional difference boundary value problem PARAMETER variational framework critical point theory fractional difference boundary value problem parameter variational framework critical point theory
  • 相关文献

参考文献15

  • 1O.P. Agrawal, D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vib. Control., 13:9-1O(2007),1269-128l.
  • 2D. Baleanu, New applications offractional variational principles, Rep. Math. Phys., 61:2(2008), 199-206.
  • 3K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
  • 4M.D. Ortigueira, Fractional central differences and derivatives, J. Vib. Control., 14:9- 10(2008) ,1255-1266.
  • 5M.F. Silva, J.A. Tenreiro Machado, R.S. Barbosa, Using fractional derivatives in joint control of hexapodrobots, J. Vib. Control., 14:9-10(2008),1473-1485.
  • 6D. Baleanu, O. Defterli, O.P. Agrawal, A central difference numerical scheme for fractional optimal control problems, J. Vib. Control., 15:4(2009),583-597.
  • 7E.M. Rabei, K.1. Nawafieh, R.S. Hijjawi, S.1. Muslih, D. Baleanu, The Hamilton formalism with fractional derivatives, J. Math. Anal. Appl., 327:2(2007),891-897.
  • 8E.M. Rabei, D.M. Tarawneh, S.1. Muslih, D. Baleanu, Heisenbergs equations of motion with fractional derivatives, J. Vib. Control., 13:9-10(2007),1239-1247.
  • 9F.M. Atici, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl., 17(2011),445-456.
  • 10Zh. Huang and C. Hou, Solvability of Nonlocal Fractional Boundary Value Problems, Discrete Dynamics in Nature and Society Volume 2013, Article ID 943961, 9 pages.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部