期刊文献+

吸收式湿热空气余热回收系统的模拟分析 被引量:3

Analysis of the Simulation of an Absorption Type Humidified Hot Air Waste Heat Recovery System
原文传递
导出
摘要 通过对典型烘干热力过程的分析,提出了基于溶液除湿和吸收式热泵原理的湿热空气余热回收系统,该系统可以在典型烘干机排气余热和太阳能热水的共同驱动下产生120℃左右饱和蒸汽,用于部分替代烘干热源,实现节能。通过建立热力学模型,对系统方案进行了验证,并讨论了蒸发器温度、发生器温度对系统各性能指标的影响。计算表明:选用溴化锂水溶液作为吸收剂,在蒸发温度80℃,发生器工作温度为63℃的条件下,烘干机可节能33.45%,系统COP为0.43,其中驱动热量中有79%来自湿热废气,吸收液的总喷淋量为排气质量的6.33倍。 Through analyzing the typical drying thermodynamic process,the authors put forward a scheme for a humidified hot air waste heat recovery system based on the principles for dehumidification by solutions and absorption type heat pumps. The system in question produced saturated steam at a temperature of around 120℃ when it was jointly driven by the waste heat from the exhaust gases of a typical dryer and solar energy-produced hot water,partially substituting the drying heat source to realize the energy saving. Through establishing a thermodynamic model,the scheme for the system was verified with the influence of the evaporator temperature and generator temperature on various performance indexes of the system being discussed. The calculation results show that with the lithium bromide solution being chosen as an absorbent,under the condition of the evaporation temperature being 80 ℃ and the working temperature of the generator being 63 ℃,the energy saving of the dryer at an efficiency of 33. 45% can be realized with the COP( coefficient of performance) of the system being 0. 43,among which 79% of the heat quantity serving as the driving force comes from the humidified hot exhaust gas and the total sprinkling quantity of the absorption solution is 6. 33 times of the mass of the exhaust gas.
出处 《热能动力工程》 CAS CSCD 北大核心 2014年第5期498-502,593,共5页 Journal of Engineering for Thermal Energy and Power
基金 宁波市科技攻关项目(2013B0029)
关键词 余热回收 吸收式 热力学模型 烘干机 waste heat recovery,absorption type,thermodynamic model,dryer
  • 相关文献

参考文献11

  • 1Kudra. Energy Aspects in Drying[ J]. Drying Technology ,2004,22 (5) : 917 -932.
  • 2Jobien Laurijssen, Frans J. De Grama, Ernst WorreU, Andre Faaij. Optimizing the energy efficiency of conventional multi-cylinder dry- ers in the paper industry [ J ]. Energy, 2010, 35 ( 2 ) : 3738 - 3750.
  • 3Tu grul o gulata R. Utilization of waste-heat recovery in textile dr- ying [ J ]. Applied Energy,2004,79 : 41 - 49.
  • 4Krokida M K, Bisharat G I. Heat recovery from dryer exhaust air [ J ]. Drying Technology, 2004,22 (7) : 1661 - 1674.
  • 5Sivill L,Ahtila P,Taimisto M. Thermodynamic simulation of dryer section heat recovery in paper machines[J]. Applied Thermal En-gineering,2005,25 : 1273 - 1292.
  • 6Rittidech, Dangeton W, Soponronnarit S. Closed-ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer[ J]. Applied Energy,2005,81 : 198 - 208.
  • 7Leena Sivill, Pekka Ahtila. Energy efficiency improvement of dryer section heat recovery systems in paper maehines-A case study[ J ]. Applied Thermal Engineering,2009,29 (5) : 3663 - 3668.
  • 8张伟,朱家玲.低温热源驱动溴化锂第二类吸收式热泵的实验研究[J].太阳能学报,2009,30(1):38-44. 被引量:11
  • 9Amn S.Mujumdar.工业化干燥原理与设备[M].北京:中国轻工业出版社,2007.
  • 10Patek J, Klomfar J. A eomputationally effective formulation of the thermodynamic properties of LiBr-H2O from 273 to 500 K over full composition range[ J]. Int. J. of Refrigeration,2006,29 (7) : 566 - 578.

二级参考文献5

  • 1Sun Dawen. Thermodynamic design data and optimum design maps for absorption refrigeration systems [ J ]. Applied Thermal Engineering, 1997, 17(3): 211--221.
  • 2Patterson M R, Perez-Blanco H. Numerical fits of the properties of lithitml-bromide water solutions[J]. ASHRAE Trans, 1988, 94(2): 2059---2077.
  • 3Irvine T F, Uemura T. Steam and gas tables with computer equations[M]. Academic Press, New Yourk, 1984.
  • 4高田秋一.吸收式制冷机[M].北京:机械工业出版社,1987..
  • 5王长庆,陆震.LiBr/H2O高温吸收式热泵及变工况性能分析[J].能源技术,1991(2):49-54. 被引量:2

共引文献10

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部