期刊文献+

碳纳米管堆积床导热及热松弛

Heat Conduction and Thermal Relaxation of a Carbon Nano-tube Pile-up Bed
原文传递
导出
摘要 运用热线法测量了碳纳米管堆积床在120 K-370 K温度范围内的导热系数和传热松弛时间。测量数据表明:碳纳米管床导热系数极低,其在低温段随温度升高呈线性增加,在高于室温的范围趋于稳定。测量过程中碳纳米管床表现出的传热松弛时间,较已有文献报道的最大的碳纳米管床传热松弛时间大一个数量级。基于此数据并结合经典的(CV双曲型热传导)模型分析单个碳纳米管接触节点上的瞬态导热及热电特性,分析认为:利用纳米多孔材料的传热延迟特性可提高瞬态热电转换效率。 By employing the hot-wire method,tested and measured were the heat conduction coefficient and heat transfer relax-ation time of a carbon nano-tube pile-up bed within its temperature range( 120K-370K). The measurement data show that the heat conduction coefficient of the bed in question is extremely low. Its temperature rise in the low temperature section assumes a linear increase and that in the temperature range above the room temperature tends to be constant. During the measurement,the carbon nano-tube bed indicated an evident heat transfer relaxation time,which was bigger than by a magnitude that of maximal carbon nano-tube bed reported by literatures currently available. On the basis of this datum and in combination with the classic Cattaneo-Vermotte( CV) model,the transient heat conduction and thermoelectric characteristics of a single carbon nano-tube in the contact node was analyzed.The research results show that by utilizing the heat conduction retarding characteristics of nano porous materials,the transient thermoelectric conversion efficiency can be enhanced.
出处 《热能动力工程》 CAS CSCD 北大核心 2014年第5期521-525,595-596,共5页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金(50906064) 教育部博士点基金(20100141110022)
关键词 纳米复合材料 碳纳米管床 松弛时间 导热系数 热电 nano-composite material,carbon nanotube bed,relaxation time,heat conduction coefficient,thermal power
  • 相关文献

参考文献20

  • 1PRASHER R S, HU X J, CHALOPIN Y, et al. Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators [ J ]. Physical Review Letters,2009,102(10) : 105901 -105904.
  • 2PRASHER R. Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: A theoretical study[J]. Physical Review B,2006,74(16) : 165413.
  • 3HU X J. Ultralow thermal conductivity of nanoparticle packed bed [ J ]. Appl Phys Lett,2007,91 ( 20 ) : 203113.
  • 4PADTURE N P, GELL M, JORDAN E H. Thermal Barrier Coatings for Gas-Turbine Engine Applications [ J ]. science, 2002, 296 (5566) : 280 - 284.
  • 5KELLY M J, WOLFE D E, SINGH J, et al. Thermal Barrier Coat- ings Design with Increased Reflectivity and Lower Thermal Con- ductivity for High-Temperature Turbine Applications[ ] ]. Interna- tional journal of applied ceramic technology,2006,3 ( 2 ) : 81 - 93.
  • 6HOCHBAUM A I, CHEN R, DELGADO R D, et al. Enhanced thermoelectric performance of rough silicon nanowires[ J]. Nature, 2008,451 (7175) : 163 - 167.
  • 7VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature fig- ures of merit [ J ]. Nature ,2001,413 (6856) : 597 - 602.
  • 8HARMAN T C, TAYLOR P J, WALSH M P, et al. Quantum Dot Superlattice Thermoelectric Materials and Devices [ J ]. science, 2002,297 (5590) : 2229 - 2232.
  • 9HSU K F. Cubic AgPbmSbTe2 + m : Bulk Thermoelectric Materials with High Figure of Merit [ J ]. science,2004,303 : 818.
  • 10POUDEL B, HAO Q, MA Y, et al. High-Thermoelectric Perform- anee of Nanostruetured Bismuth Antimony Telluride Bulk Alloys [J]. science,2008,320(5876) : 634 -638.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部