期刊文献+

NoSQL系统的容错机制:原理与系统示例 被引量:2

Fault-tolerance in NoSQL systems:Principles and system analysis
下载PDF
导出
摘要 NoSQL数据管理系统因其具有良好的可扩展性和容错性,在以Web数据管理和分析处理为代表的新型大数据应用环境中得到了广泛使用.这些系统通过新型一致性模型和数据冗余等技术,实现了集群环境中的容错处理.本文在对集群环境数据管理系统的一致性保持和容错处理基本原理进行介绍的基础上,对Bigtable、HBase、Dynamo、Cassandra,以及PNUTS五个典型的NoSQL系统的容错机制及其实现进行分析与对比,并讨论它们的设计原则和实现技术对于系统的可用性、性能、复杂负载的处理能力等方面的影响.最后,讨论现有NoSQL系统容错机制对于设计和实现支持关键任务的内存数据管理系统的借鉴意义. NoSQL data management systems have been widely used in Web data management and processing applications, for their high scalabilities and fault tolerence. The fault tolerence is achieved by using new consistency models and data replications in clustered systems. In this paper, the mechanism and implementation details of five representative NoSQL systems, i.e. Bigtable, HBase, Dynamo, Cassandra, and PNUSTS, were discussed and analyzed, after a general introduction to the principles of consistency preserving and fault tolerent processing. Furthermore, the impact of these technologies on system availability, performance and workload balance, was analyzed. Finally, their influence on the design of in-memory database management systems was discussed.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期1-16,共16页 Journal of East China Normal University(Natural Science)
基金 国家973课题(2010CB731402) 国家自然科学基金(61170086)
关键词 NoSQL系统 容错 一致性保持 NoSQL systems fault-tolerance consistency preserve
  • 相关文献

参考文献43

  • 1NoSQL matters.NoSQL DEFINITION[EB/OL].[2014-06-08].http://nosql-database.org.
  • 2百度百科.淘宝网[EB/OL].[2014-06-08].http://baike.baidu.com/view/1590.htm? fromtitle=%E6% B7%98% E5% AE% 9D&fromid=145661 &type=syn.
  • 3淘宝网品牌介绍[EB/OL].[2014-06-08].http://www.maigoo.com/maigoocms/special/services/170taobao.html.
  • 4张潇.“双11”网购疯狂!天猫及淘宝成交额突破350亿[EB/OL].[2014-06-08].http://money.163.com/13/1112/16/9DGCT0BJ00253B0H.html.
  • 5CONSTINE J.How Big Is Facebook's Data? 2.5 Billion Pieces Of Content And 500 + TerabytesIngested Every Day[EB/OL].[2014-06-08].http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-pieces-of-content-and-500-terabytes-ingested-every-day/.
  • 6HENDERSON C.Flickr-Scalable Web Architectures:Common Patterns and Approaches[EB/OL].[2014-06-08].http://krisjordan.com/2008/09/16/cal-henderson-scalable-web-architectures-common-patterns-and-approa-ches.
  • 7PLATTNER H,ZEIER A.In-memory Data Management:Technology and Applications[M].Berlin:Springer,2012.
  • 8BREWER E A.Towards robust distributed systems (Invited Talk).ACM SIGACT-SIGOPS,2000.
  • 9GILBERT S,LYNCH N.Brewer's conjecture and the feasibility of consistent,available,partition-tolerant web services[C].SIGACT News,2002.
  • 10BREWER E A. Pushing the cap: Strategies for consistency and availability[J]. IEEE Computer, 2012,42(2) :23- 29.

共引文献3

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部