期刊文献+

内存数据仓库集群技术研究 被引量:2

Research on in-memory data warehouse cluster technologies
下载PDF
导出
摘要 随着硬件的集成度不断提高,多核处理器和大内存成为当前主流的计算平台,内存计算也成为新兴的高性能数据分析平台.内存数据仓库集群技术面向高性能分析计算,是实现大数据实时分析的基础平台.本文概括地介绍了中国人民大学高性能数据库团队在内存数据仓库集群技术方面的研究工作,包括:以列分布和列计算服务为中心的ScaMMDB内存数据仓库集群,以水平分片、并行计算为中心的ScaMMDBⅡ和reverse-star schema分布、集群向量计算为特征的MiNT-OLAP Cluster等技术的研究发展过程.分析了内存数据仓库集群技术的关键问题及技术挑战,并针对新的内存数据仓库集群应用需求展望未来技术的发展. With the development of hardware integration techniques, multicore processor andbig memory come to be main stream configuration and in-memory computing comes to be the e-merging high performance data analytical platform. In-memory data warehouse cluster technolo-gies target high performance analytical computing, and it will be the basic platform for big datareal-time analytical processing. This paper briefly introduces the research work on in-memory da-ta warehouse cluster of Renmin University high performance database research group, includingthe developments of column distribution and column computing service oriented ScaMMDB clus-ter, horizontal partition and parallel computing oriented ScaMMDBII, and reverse-star schemadistribution and cluster vector computing oriented MiNT-OLAPCluster technologies. The criticalissues and technical challenges are also presented in this paper. Finally, we give a prospectivediscussion on future technologies for the coming in-memory data warehouse cluster requirements.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期117-132,共16页 Journal of East China Normal University(Natural Science)
基金 中央高校基本科研业务费专项资金(12XNQ072 13XNLF01)
关键词 内存数据仓库 集群 向量计算 in-memory data warehouse cluster vector computing
  • 相关文献

参考文献2

二级参考文献31

  • 1O'Neil Patrick E, O'Neil Elizabeth J, Chen Xue-Dong, Revilak Stephen. The star schema benchmark and augmented fact table indexing//Proceedings of the TPCTC. Lyon, France, 2009:237 -252.
  • 2Han Wook-Shin, Ng Jack, Markl Volker, Kache Holger, Kandil Mokhtar. Progressive optimization in a shared-nothing parallel database//Proeeedings of the SIGMOD. Beijing, China, 2007:809 820.
  • 3Lima Alexandre A B, Furtado Camille, Valduriez Patrick, Mattoso Marta. Parallel OLAP query processing in database clusters with data replication. Distributed and Parallel Databases, 2009, 25(1-2): 97-123.
  • 4Furtado Pedro: Model and procedure for performance and availability wise parallel warehouses. Distributed and Parallel Databases, 2009, 25(1-2): 71- 96.
  • 5Yang Christopher, Yen Christine, Tan Ceryen, Madden Samuel. Osprey: Implementing MapReduce-style fault toler ance in a shared nothing distributed database//Proceedings of the ICDE. Long Beach, California, USA, 2010:657-668.
  • 6Chen Songting. Cheetah: A high performance, custom data warehouse on top of MapReduce//Proceedings of the VLDB. Singapore, 2010, 3(2): 1459-1468.
  • 7SAP NetWeaver: A Complete Platform for Large-Scale Busi ness Intelligence. Winter Corporation White Paper. May, 2005.
  • 8The Vertica Analytic Database: Rethinking Data Warehouse Architecture. Winter Corporation White Paper. May, 2005.
  • 9MacNicol R, French B. Syhase IQ muhiplex designed for an alytics//Proceedings of the VLDB. Toronto, Canada, 2004: 1227-1230.
  • 10Stonebraker Michael, Abadi Daniel J, Batkin Adam, Chen Xuedong et al. C Store: A column-oriented DBMS//Proceed ings of VLDB. Trondheim, Norway, 2005:553 -564.

共引文献30

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部