期刊文献+

蚁群优化粒子滤波视觉跟踪算法 被引量:1

Ant Optimized Particle Filter For Visual Tracking
下载PDF
导出
摘要 针对传统的基于再采样方法的粒子滤波算法存在的样本贫乏现象,提出采用蚁群优化的思想取代再采样步骤,通过有效模拟的蚂蚁觅食的生物特性,抑制样本贫乏现象,从而提高目标跟踪的准确性.实验结果表明,该算法能够有效处理目标快速运动、目标遮挡、交互等难题,表现出较好的鲁棒性. The thought of ant optimization replacing resampling step is proposed to solve the sample deficiency problem caused by the traditional particle filter based on resampling method. By effectively simulating the foraging behavior of ants, the proposed algorithm can suppress the impoverishment problem of sample and consequently im- prove the target tracking accuracy. The experimental results show that the proposed algorithm is robust and efficient in dealing with the issues of rapid motion, object occlusion and interaction.
作者 苗彬 侯燕
出处 《烟台大学学报(自然科学与工程版)》 CAS 2014年第4期275-278,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
关键词 视觉跟踪 粒子滤波 蚁群优化 再采样 visual tracking particle filter ant optimization resampling
  • 相关文献

参考文献9

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Journal of Com- puter Vision, 1998, 28( 1 ) :5-28.
  • 3Kwon J, Lee K, Park F. Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions [ C l//Proceedings of International Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 991-998.
  • 4Duffner S, Odobez J. Dynamic Partitioned Sampling for Tracking with Discriminative Features [ C ]//Proceedings of British Machine Vision Conference. London : BMVA, 2009:710 -718.
  • 5Li Min, Chen Wei, Huang Kaiqi, et al. Visual Tracking via Incremental Self-tuning Particle Filtering on the Affine Group [ C ]//Proceedings of International Conference on Computer Vi- sion and Pattern Recognition. San Francisco: IEEE, 2010:1315 -1322.
  • 6Mikami D, Otsuka K, Yamato J. Memory-based particle filter for tracking objects with large variation in pose and appear- ance [ C ]//Proceedings of European Conference on Computer Vision. Greece: Springer, 2010:215-228.
  • 7李培华.一种新颖的基于颜色信息的粒子滤波器跟踪算法[J].计算机学报,2009,32(12):2454-2463. 被引量:21
  • 8Khan Z, Balch T, Dellaert F. MCMC-based particle filte- ring for tracking a variable number of interacting targets [ J ]. Pattern Analysis and Machine Intelligence, 2005,27( 11 ) :1805 -1819.
  • 9DorigoM,StutzleT.蚁群优化[M].北京:清华大学出版社,2007.

二级参考文献20

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197- 208.
  • 5Li P, Zhang T, Pece A E. Visual contour tracking based on particle filters. Image and Vision Computing, 2003, 21(1): 111-123.
  • 6Nummiaro K, Koller Meier E B, Van Gool L. An adaptive color based particle filter. Image and Vision Computing, 2003, 21(1): 100 -110.
  • 7Perez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking//Proceedings of the European Conference on Computer Vision. Copenhagen, Denmark, 2002:661-675.
  • 8Jacquot A, Sturm P, Ruch O. Adaptive tracking of non-rigid objects based on color histograms and automatic parameter selection//Proceedings of the IEEE Workshop on Motion and Video Computing, Breckenridge, USA, 2005: 103-109.
  • 9Town C. Multi-sensory and multi modal fusion for sentient computing. International Journal of Computer Vision, 2007, 71(2):235- 253.
  • 10Viola P, Jones M. Rapid object detection using a boosted cascade of simple features//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii, USA, 2001:511 -518.

共引文献271

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部