期刊文献+

基于非线性模糊支持向量机的知识化制造模式与动态环境匹配分类方法 被引量:1

Classification method of matching knowledgeable manufacturing mode with dynamic environment based on nonlinear fuzzy weight SVM
下载PDF
导出
摘要 为了评价企业当前知识化制造模式与动态环境因素的匹配性,为企业的快速响应提供依据,提出了一种考虑模糊输入和不均衡样本的非线性模糊加权支持向量机(NFW-SVM)模型.考虑到实际生产面临的动态环境因素具有模糊性和不确定性,引入三角模糊数对模糊因素进行描述.针对不同匹配类别数据样本的不均衡性,设置了不同的分类惩罚因子,以降低小样本错分的比例.将变异算子和具有收缩因子的动态惯性权重引入到标准粒子群优化算法中,利用改进的粒子群算法对模型参数进行优化,提高模型的分类精度.给出了基于NFW-SVM模型的知识化制造模式与动态环境匹配的分类方法.最后,通过实例验证了该方法的有效性和可行性. To correctly judge the matching category between current knowledgeable manufacturing mode and dynamic environment factors,and provide the basis for rapid response,a model of nonlinear fuzzy weight-support vector machine (NFW-SVM)is proposed in which fuzzy inputs and imbalance of the different matching categories of samples are considered.Considering the vagueness and uncertainty of the dynamic production environment in the actual production,the triangular fuzzy number is adopted to describe the vague factor.For the imbalance characters of the data sample in different categories,different category penalty factors are set up in the model to reduce the fault proportions of small samples.The mutation operator and dynamic inertia weight with constriction factors are introduced to the standard particle swarm optimization algorithm.To enhance the classification accuracy,the model parameters are optimized by the improved particle swarm optimization algo-rithm.The classification method based on NFW-SVM to judge the matching category between dynamic environment factors and current manufacturing mode is presented.Finally,the effectiveness and feasibility of the proposed method are verified by an example.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第5期957-962,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金重点资助项目(60934008)
关键词 知识化制造模式 环境因素 支持向量机 粒子群优化 knowledgeable manufacturing mode environment factors support vector machine(SVM) particle swarm optimization
  • 相关文献

参考文献10

  • 1严洪森,刘飞.知识化制造系统——新一代先进制造系统[J].计算机集成制造系统-CIMS,2001,7(8):7-11. 被引量:31
  • 2Yan H S. A new complicated-knowledge representation approach based on knowledge meshes[ J ]. IEEE Trans- actions on Knowledge and Data Engineering, 2006, 18 (1): 47-62.
  • 3Sabzekar M, Naghibzadeh M. Fuzzy c-means improve- ment using relaxed constraints support vector machines [J]. Applied Soft Computing, 2013, 13(2): 881- 890.
  • 4Lin C F, Wang S D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002, 13 (9):464-471.
  • 5李刚,贺昌政.基于模糊加权支持向量机的移动通讯客户满意度问题研究[J].中国经济与管理科学,2008(6):28-30. 被引量:1
  • 6Liu B D. Minimax chance constrained programming models for fuzzy decision systems [ J ]. Information Sciences, 1998, 112(1/2/3/4): 25-38.
  • 7李存林,张强.基于可能性测度的模糊对策[J].北京理工大学学报,2011,31(3):324-328. 被引量:4
  • 8Wang S, Watada J. A hybrid modified PSO approach to VaR-based facility location problems with variable ca- pacity in fuzzy random uncertainty [ J ]. Information Sciences, 2012, 192( 1 ) : 3 - 18.
  • 9Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[ J]. Information Process- ing Letters, 2007, 102( 1 ) : 8 - 16.
  • 10Ji A, Pang J, Qiu H. Support vector machine for clas- sification based on fuzzy training data [ J]. Expert Sys- tems with Applications, 2010, 37(4) : 3495 -3498.

二级参考文献10

  • 1Butnariu D. Fuzzy games: a description of time concept [J]. Fuzzy Sets and Systems, 1978,1 :181 - 192.
  • 2Campos L. Fuzzy linear programming model to solve fuzzy matrix game[J]. Fuzzy Sets and Systems, 1989, 32 : 275 - 289.
  • 3Nishizaki I, Sakawa M. Fuzzy and multi-objective games for conflict resolution[M]. New York: Physicaverlag, 2001.
  • 4Nishizaki I, Sakawa M. Equilibrium solutions in multi- objective bi-matrix games with fuzzy payoffs and fuzzy goals[J]. Fuzzy Sets and Systems, 2000, 111: 99- 116.
  • 5Bector C R, Chandra S, Vijay V. Matrix games with fuzzy goals and fuzzy linear programming duality[J]. Fuzzy Optimization and Decision Making, 2004,3 (3):255 - 269.
  • 6Bector C R, Chandra S. Fuzzy mathematical programming and fuzzy matrix games[M]. Berlin: Springer, 2005.
  • 7Takashi M. On characterization of equilibrium strategy of hi-matrix games with fuzzy payoffs[J]. Journal of Mathematical Analysis and Applications, 2000,25 (1) : 885 - 896.
  • 8Zadeh L A. Probability measure of fuzzy events [J]. Journal of Mathematical Analysis and Applications, 1968,23(2) :421 - 427.
  • 9赵敏,CIMS简报,2000年,8期,10页
  • 10严洪森,面向21世纪先进制造技术高级研讨会,2000年

共引文献33

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部