期刊文献+

考虑通信状况的多机器人CSLAM问题综述 被引量:6

An Overview on the Cooperative SLAM Problem of Multi-robot Systems Considering Communication Conditions
下载PDF
导出
摘要 多机器人系统的通信状况能够直接影响协作同时定位与地图创建(Cooperative simultaneous localization and mapping,CSLAM)算法的设计和实现.根据对多机器人通信状况所作出假设的侧重点不同,对多机器人CSLAM算法研究现状和进展进行综述.首先,简要介绍了基于完全连通通信条件的集中式CSLAM算法的特点和缺陷;其次,结合多机器人系统初始相对位姿关系未知的情况,从地图配准、数据关联和地图融合等三个方面,对基于通信范围或者带宽受限条件的分布式CSLAM算法的地图合并问题进行了分析和阐述;进而重点对考虑稀疏–动态通信状况的分布式CSLAM算法的最新研究成果进行了归纳总结.最后指出多机器人CSLAM研究领域今后的研究方向. The communication conditions can affect the design and realization of cooperative simultaneous localization and mapping (CSLAM) algorithms directly. According to the different focuses among the assumptions on the communication conditions of multi-robot systems, the state-of-the-art research advances of multi-robot CSLAM algorithms are presented in this paper. Firstly, the characters and drawbacks of the centralized CSLAM algorithm based on fully connected communication condition are introduced. Secondly, in the situation of unknown initial correspondence of the multi-robot system, the map merging issue of distributed CSLAM algorithm based on limited communication range and bandwidth is analyzed and defined in terms of map alignment, data association and map fusion. Furthermore, some of the latest research achievements on distributed CSLAM algorithm considering sparse-dynamic communication situation are also presented. Finally, the prospect of future research in the area of multi-robot CSLAM is summarized.
出处 《自动化学报》 EI CSCD 北大核心 2014年第10期2073-2088,共16页 Acta Automatica Sinica
基金 陕西省基金项目(2012K06-45)资助~~
关键词 多机器人系统通信网络 协作SLAM 地图合并 地图配准 数据关联 地图融合 Communication network of multi-robot system, cooperative simultaneous localization and mapping (Coop-erative SLAM), map merging, map alignment, data association, map fusion
  • 相关文献

参考文献10

二级参考文献138

共引文献219

同被引文献81

  • 1陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 2张恒,樊晓平.移动机器人同步定位与地图构建过程中的轨迹规划研究[J].机器人,2006,28(3):285-290. 被引量:13
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization and mapping:part I[J]. Robotics & Automation Magazine, IEEE, 2006, 13(2): 99-110.
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II[J]. Robotics & Automation Magazine, IEEE, 2006, 13(3): 108-117.
  • 5Paz L M, Pini6s P, Tard6s J D, et al. Large-scale 6-DOF SLAM with stereo-in-hand[J]. Robotics, IEEE Transactions on, 2008, 24(5): 946-957.
  • 6I)avistm A J, l~qd I I), Mohotl N I). ct ah MonoSLAM: I~eal-lime single camera SI,AM[.I]. I'altern Anahsis and Machine Inl~lligcnc~~. IEEE Transactions on, 2007. 29(6): 1052-1067.
  • 7Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007: 225-234.
  • 8S6ez J M, Escolano F. 6dof entropy minimization slam[C]//Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006: 1548-1555.
  • 9Pini6s P, Tard6s J D. Large-scale slam building conditionally independent local maps: Application to monocular vision[J]. Robotics, IEEE Transactions on, 2008, 24(5): 1094-1106.
  • 10Engel J, Sch~ps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[My/Computer Vision-ECCV 2014. Springer International Publishing, 2014: 834-849.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部