期刊文献+

基于图割的单幅图像影子检测 被引量:3

Shadow Detection Based on Graph Cuts for a Single Image
下载PDF
导出
摘要 为了准确检测单幅图像中的影子,提出一种基于图割的影子检测方法.首先,使用均值漂移将原始图像分割为若干区域并记录区域之间的边界.其次,利用支持向量机分类器分别获得分割图像中的候选影子边界和候选影子–非影子区域对.然后,利用候选影子边界两侧的区域信息及候选影子–非影子区域对信息构造一个能量函数,该能量函数反映了将图像中一部分区域划分为影子区域而另一部分区域划分为非影子区域时所需的代价.再次,结合该能量函数构造出无向图,并证明所构造的无向图的最小割对应能量函数的最小值.最后,通过图割算法求解该能量函数得到最终的影子检测结果.实验结果表明,与现有代表最新进展的单幅图像影子检测方法相比,所提方法提高了影子检测结果的准确性和连续性. In order to detect the shadow in a single image accurately, a shadow detection approach based on graph cuts for a single image is proposed in this paper. Firstly, the original image is segmented into several regions using the Mean- Shift algorithm, and the boundary information between adjacent regions is recorded. Secondly, the candidate shadow boundary and the candidate shadow-nonshadow region pair are obtained respectively by using the support vector machine classifier. Then, an energy function, which reflects the cost of dividing some image regions as shadow regions and the others as nonshadow ones, is constructed by utilizing regions~ information on both sides of the candidate shadow boundary and the candidate shadow-nonshadow region pair. Furthermore, combining with the energy function, an undirected graph is constructed and it is proved that the minimum cut of the graph corresponds to the minimum of the energy function. Finally, the energy function is solved with the graph cuts algorithm and the final shadow regions in an image are gained. The experimental results show that, compared with the latest shadow detection methods for a single image, the proposed approach improves the accuracy and continuity of the results.
出处 《自动化学报》 EI CSCD 北大核心 2014年第10期2306-2315,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61379065) 河北省自然科学基金(F2010001276 F2014203119)资助~~
关键词 户外图像 影子检测 图割 边界信息 区域信息 Outdoor image, shadow detection, graph cuts, boundary information, region information
  • 相关文献

参考文献15

  • 1Al-Najdawi N, Bez H E, Singhai J, Edirisinghe E A. A survey of cast shadow detection algorithms. Pattern Recognition Letters, 2012, 33(6): 752-764.
  • 2Adeline K R M, Chen M, Briottet X, Pang S K, Paparoditis N. Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80(6): 21-38.
  • 3Sunkavalli K, Zickler T, Pfister H. Visibility subspaces: uncalibrated photometric stereo with shadows. In: Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2011. 251-264.
  • 4Karsch K, Hedau V, Forsyth D, Hoiem D. Rendering synthetic objects into legacy photographs. ACM Transactions on Graphics, 2011, 30(6): 1-12.
  • 5Abrams A, Miskell K, Pless R. The Episolar constraint: monocular shape from shadow correspondence. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013. 1407-1414.
  • 6Finlayson G D, Hordley S D, Lu C, Drew M S. On the removal of shadows from images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 59-68.
  • 7Maxwell B A, Friedhoff R M, Smith C A. A bi-illuminant dichromatic reflection model for understanding images. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8.
  • 8Tian J D, Sun J, Tang Y D. Tricolor attenuation model for shadow detection. IEEE Transactions on Image Processing, 2009, 18(10): 2355-2363.
  • 9Zhu J J, Samuel K G G, Mashood S Z, Tappen M F. Learning to recognize shadows in monochromatic natural images. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010. 223-230.
  • 10Lalonde J F, Efros A A, Narasimhan S G. Detecting ground shadows in outdoor consumer photographs. In: Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010. 322-335.

同被引文献23

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2杨俊,赵忠明.基于归一化RGB色彩模型的阴影处理方法[J].光电工程,2007,34(12):92-96. 被引量:29
  • 3Kim C. Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511.
  • 4Li H L, Ngan K N. Unsupervized video segmentation with low depth of field. IEEE Tl'aJlsactions on Circuits and Systems for Video Technology, 2007, 17(12): 1742-1751.
  • 5Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transaczfons on Circuits and Systems for Video Technology, 2011, 21(11): 1571-1580.
  • 6Graf F, Kriegel H P, Weiler M. Robust segmentation of relevant regions in low depth of field images. In: Proceedings of the 18th International Conference on Image Processing. Brussels, Belgium: IEEE, 2011. 2861-2864.
  • 7Chen T T, Li H L. Segmenting focused objects based on the amplitude decomposition model. Pattern Recognition Letters, 2012, 33(12): 1536-1542.
  • 8Konik H, Neverova N. Edge-based method for sharp region extraction from low depth of field images. In: Proceedings of the 2002 International Conference on Visual Communications and Image Processing. San Diego, USA: IEEE, 2012. 1-6.
  • 9Mei J Y, Si Y L, Gao H J. A curve evolution approach for unsupervised segmentation of images with low depth of field. IEEE Transactions on Image Processing, 2013, 22(10): 4086 -4095.
  • 10Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the 2001 International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 105 -112.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部