期刊文献+

一种可用于航空发动机健康状态预测的动态集成极端学习机模型 被引量:8

A dynamic ensemble extreme learning machine model for aircraft engine health condition prediction
原文传递
导出
摘要 提出一种动态集成极端学习机模型用于航空发动机健康状态预测.采用AdaBoost.RT集成学习算法对极端学习机(ELM)进行集成,在训练时采用每个训练样本的近邻样本对ELM的局域性能进行评估;在预测时首先确定新样本在训练样本集中的近邻样本,然后根据ELM在近邻样本上的性能来赋予集成权值实现弱学习机的动态集成.以燃油流量为指标进行航空发动机健康状态预测,动态集成ELM模型短期预测结果的平均相对误差绝对值(MAPE)为3.688%,小于单一ELM模型的3.830%以及静态集成ELM模型的3.719%;长期预测结果中动态集成ELM模型的MAPE为3.075%,小于单一ELM模型的4.355%以及静态集成ELM模型的3.884%.因此动态集成ELM模型更适用于航空发动机健康状态预测. A dynamic ensemble extreme learning machine (ELM) model was proposed aircraft engine health condition prediction. The AdaBoost. RT algorithm was used to integrate ELM to construct the ensemble model. During the training process, the neighboring samples of every training sample were employed to evaluate the local performance of ELM. In the prediction process, the neighboring samples of new samples in the training sample set were selected firstly, then the combined weights of ELM were determined by the performance on the neighboring samples, implementing the dynamic ensemble of the weak learning machine. Fuel flow was utilized as a health index for aircraft engine health condition prediction. For short term prediction, the mean absolute percentage error (MAPE) of the dynamic ensemble ELM model was 3. 688 %, less than the MAPE of the single ELM model and the static ensemble ELM model, which were 3. 830% and 3. 719%, respectively. And for long term prediction, the MAPE of the dynamic ensemble ELM model was 3. 075%, also less than that of the single ELM model of 4. 355% and the static ensemble ELM model of 3. 884%. Thus, the dynamic ensemble ELM model is better for the aircraft engine health condition prediction.
作者 钟诗胜 雷达
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第9期2085-2090,共6页 Journal of Aerospace Power
基金 国家高技术研究发展计划(2012AA040911-1) 国家自然科学基金(60939003)
关键词 航空发动机 健康状态预测 集成学习 动态集成 极端学习机 aircraft engine health condition prediction ensemble learning
  • 相关文献

参考文献18

  • 1丁刚,徐敏强,侯立国.基于过程神经网络的航空发动机排气温度预测[J].航空动力学报,2009,24(5):1035-1039. 被引量:24
  • 2金向阳,林琳,钟诗胜,丁刚,刘义翔.航空发动机振动趋势预测的过程神经网络法[J].振动.测试与诊断,2011,31(3):331-334. 被引量:17
  • 3陈果,杨虞微.航空发动机复杂磨损趋势的神经网络多变量预测模型[J].中国机械工程,2007,18(1):70-74. 被引量:12
  • 4Schapire R E.The strength of weak learnability[J].Machine Learning,1990,5(2):197-227.
  • 5Freund Y,Schapire R E.A desicion-theoretic generalization of on-line learning and an application to boosting[J].Computational Learning Theory,1995,904:23-37.
  • 6Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.
  • 7Solomatine D P,Shrestha D L.AdaBoost.RT:a boosting algorithm for regression problems[C]//Proceeding of 2004 IEEE International Joint Conference on Neural Networks.Budapest,Hungary:IEEE,2004:1163-1168.
  • 8Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70:489-501.
  • 9Huang G B,Wang D H,Lan Y.Extreme learning machines:a survey[J].International Journal of Machine Learning and Cybernetics,2011,2(2):107-122.
  • 10SHI Lichen,BAO Lianglu.EEG-based vigilance estimation using extreme learning machines[J].Neurocomputing,2013,102:135-143.

二级参考文献24

共引文献50

同被引文献100

  • 1董师师,黄哲学.随机森林理论浅析[J].集成技术,2013,2(1):1-7. 被引量:151
  • 2樊思齐,刘清波,荣向军,李树人,辛晓文,王小峰.利用飞行试验信号对发动机模型辨识的研究[J].航空学报,1993,14(8). 被引量:3
  • 3曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:282
  • 4胡石元,姜昕,丁家玲.教师课堂教学质量的云模型评价方法[J].武汉大学学报(哲学社会科学版),2007,60(3):455-460. 被引量:22
  • 5R ESchapire. The strength of weak learnability [ J ]. Machine Leaming, 1990,5(2) : 197-227.
  • 6N Littlestone, M K Warmuth. The weighted majority algorithm [ J ]. Information and Computation, 1994,108 ( 2 ) : 212-261.
  • 7Y Freund, R E Schapire. Experiments with a new Boosting algo- rithm[ C]. Proceedings of the 13th Conference on Machine Learn- ing. San Francisco, USA: Morgan Kanfmann, 1996:148-156.
  • 8Y Freund, R E Schapire. A decision-theoretic generalization of on -line learning and an application to Boosting[ J]. Journal of Com- puter and System Sciences, 1997,55( 1 ) : 119-139.
  • 9D P Solomatine, D L Shrestha. AdaBoost. RT: A boosting algo- rithm for regression problems [ C ]. Proc of the Int Joint Conf on Neural Networks. Budapes, 2004 : 1163-1168.
  • 10Liu Shuang, et al. Efficiency enhancement of a process-based rainfall-runoff model using a new modified AdaBoost. RT tech- nique[ J ]. Applied Soft Computing, 2014,23 (5) :521-529.

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部