期刊文献+

不同工况下电动汽车冷板液冷系统散热性能试验研究 被引量:13

An Experimental Study on the Heat Dissipation Performance of Cooling-plate Liquid Cooling System for Electric Vehicle in Different Conditions
下载PDF
导出
摘要 对采用冷板液冷方式的电动汽车液冷系统进行了试验研究,分析不同水冷板流径、进液流量和环境温度对其散热性能的影响。结果表明:随着进液流量增加,液冷系统的散热性能呈现先提高后降低的趋势;不论何种流径方案,都有一个最佳进液流量(单进单出为350L/h,双进双出为450L/h),使最高温升和内部最大温差都达到最小;采用双进双出流径方案时,随着环境温度的升高,最高温升减小,而内部最大温差增大;与单进单出流径相比,双进双出流径液冷系统的电池模块最高温升和内部最大温差均明显降低,散热效率得到提高;在环境温度不高于35℃,采用350~450L/h的进液流量,双进双出流径方案的散热性能完全满足设计要求。 An experimental study is conducted on an electric vehicle adopting cooling-plate liquid cooling system,to analyze the effects of different flow path schemes,inlet flow rates and ambient temperatures on the heat dissipation performance of cooling system. The results show that with the increase in inlet flow rate,the heat dissipation performance of cooling system rises first and then falls. There exist a best inlet flow rate for both flow path schemes(350L /h for single-in-single-out and 450 L /h for double-in-double-out)to achieve minimum temperature rise and internal temperature difference. For double-in-double-out scheme,with the rise in ambient temperature,the temperature rise reduces but the internal temperature difference increases; Compared with single-in-single-out scheme,both temperature rise and internal temperature difference for double-in-double-out scheme are obviously less with a better cooling efficiency. At an ambient temperature not higher than 35℃ with an inlet flow rate between350 L / h and 450 L /h,the cooling system with double-in-double-out scheme completely meet the requirements of design.
出处 《汽车工程》 EI CSCD 北大核心 2014年第9期1057-1062,1092,共7页 Automotive Engineering
基金 国家863计划项目(2011AA11A210) 江苏大学高级人才专项(1281120041)资助
关键词 电动汽车 冷板液冷 散热性能 流径 进液流量 electric vehicle cooling-plate liquid-cooling heat dissipation performance flow path inlet flow rate
  • 相关文献

参考文献12

二级参考文献41

  • 1杨毅夫.从EVS17看国际电动车及动力电池发展趋势[J].电池,2001,31(4):192-194. 被引量:12
  • 2R Kotz, M Carlen.Principles and Applications of Electrochemical Capacitors [J] .Electroehimica Acta 45, 2000:2483 - 2498.
  • 3Levent U Gokdere, Khalid Benlyazid, Roger A Dougal, Enrico Santi,Charles W Brice.A Virtual Prototype for a Hybrid Electric Vehicle [J] .Mechatronics 12, 2002: 575-593.
  • 4Juergen Fiiendrich, Gerardo Fiiedlmeier, Ferdinand Panik, Wolfgang Weiss. Necar4-The First Zero Emission Vehicle with Acceptable Range[C] .Proceedings of EVS-16, 1999.
  • 5A F Burke, M Miller.Fuel Efficiency Comparisons of Advanced Transit Buses using Fuel Cell and Engine Hybrid Electric Drivelines [ C] . Energy Conversion Engineering Conference and Exhibit, 2000, 2:1333 -1340.
  • 6Cleaning Up: Zero-Emissioa Bases in Real-Wool Use, A Report on the XCELLSIS/Ballard Phase 3 Furl Call Bus Program [R] .
  • 7Karl Viktor Schallet, Christian Gruber.Future Transport Challenges[C] .Proceedings of EVS-18, 2001.
  • 8CHEN Y, EVANS J W. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application [J].J Electrochem Soc, 1993, 140(7): 1 833-1 838.
  • 9CHOI K W, YAO N P. Heat transfer in lead-acid batteries design for electric-vehicle propulsion application [J]. J Electrochem Soc,1979, 126(8): 1 321-1 328.
  • 10PESARAN A A, BURCH S, KEYSE M. An approach for designing thermal management systems for electric and hybrid vehicle battery packs [A]. The Fourth Vehicle Thermal Management Systems Conference and Exhibition[C]. London: NREL, 1999. 1 - 16.

共引文献169

同被引文献56

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部