期刊文献+

LBSN中位置信息与网络拓扑相融合的好友预测 被引量:3

Friends Prediction Based on Fusion of Topology and Location in LBSN
下载PDF
导出
摘要 在基于位置的社会网络中,好友预测通常通过相似性标准来衡量用户间的相似性,然后将最相似的用户作为好友推荐给指定用户。传统的用户特征选取没有区分各个特征之间的差异,因而不能很好地代表用户的整体特征。提出了一种位置信息与社会网络拓扑相融合的好友预测方法。首先通过信息增益方法选取出更能代表用户整体特征的3个相关特征,然后对选取的特征进行融合,最后采用分类方法进行好友的预测。实验表明,提出的模型不依赖于具体的分类算法,并且预测性能优于多层好友模型。 In location based social networks, friends prediction usually predicts friends with some similarity metric, and recommends the most similar users to some user. Traditional selection methods of user features don' t consider the difference between different features, so they cannot represent the overall features of users. This paper proposed a friends prediction method based on fusion of location information and social topology. First, we selected three relative features that can represent the overall user feature with information gain, then fused the selected relative features, and finally predicted friends with classification method. The experiments show that the proposed method doesn't depend on the concrete classification method, and performs better than the multi-layer friend model.
作者 潘果 徐雨明
出处 《计算机科学》 CSCD 北大核心 2014年第9期115-118,共4页 Computer Science
基金 国家自然科学基金项目(61133005 90715029 61070057 61370095) 湖南省科技计划项目(2013GK3082) 湖南省教育厅资助项目(08D092)资助
关键词 位置 拓扑 推荐 链接预测 Location Topology Recommendation Link prediction
  • 相关文献

参考文献14

  • 1Leskovec J, Lang K J, Dasgupta A, et al. Statistical properties of community structure in large social and information networks [C]//Proceedings of the 17th international conference on World Wide Web. ACM, 2008 : 695-704.
  • 2潘晓,郝兴,孟小峰.基于位置服务中的连续查询隐私保护研究[J].计算机研究与发展,2010,47(1):121-129. 被引量:66
  • 3Cho E, Myers S A, Leskovec J. Friendship and mobility: user movement in location-based social networks[C]///Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011:1082-1090.
  • 4Ye M, Yin P, Lee W (2. Location recommendation for location- based social networks[C]//Proceedings of the 18th SIGSPA TIAI. International Conference on Advances in Geographic In- formation Systems. ACM, 2010 : 458-461.
  • 5邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559
  • 6Schwartz M F, Wood D M. Discovering shared interests using graph analysis [C] //Communications of the ACM. August 1993:78-89.
  • 7Grob R, Kuhn M, Wattenhofer R, et al. Cluestr: Mobile social networking for enhanced group communication [C]//Procee- dings of the ACM 2009 International Conference on Supporting Group Work. May 2009 : 81-90.
  • 8Gregory S. An algorithm to find overlapping community struc- ture in networks[C]//PKDD 2007. September 2007:91-102.
  • 9Ozseyhan C, Badur B, Darcan O N. An Association Rule- ased Recommendation Engine for an Online Dating Site[C]// Communications of the IBIMA. 2012.
  • 10Li N, Chen G. Analysis of a Location-Based Social Network [C]// Proceedings of the 2009 International Conference on Computa- tional Science and Engineering. 2009:263-270.

二级参考文献36

  • 1王志刚,王汝传,王绍棣,张登银.网络拓扑发现算法的研究[J].通信学报,2004,25(8):36-43. 被引量:35
  • 2潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 3Mokbel M F, Chow C Y, Aref W G. The new Casper: Query processing for location services without compromising privacy [C] //Proc of the 32nd Int Conf on Very Large Data Bases (VLDB). New York: ACM, 2006:763-774.
  • 4Chow C, Mokbel M F. Enabling privacy continuous queries for revealed user locations [C]//LNCS 4605 : Proc of the Int Syrup on Advances in Spatial and Temporal Databases (SSTD). Berlin: Springer, 2007.
  • 5Gruteser M, Grunwal D. Anonymous usage of location-based services through spatial and temporal cloaking [C] //Proe of the Int Conf on Mobile Systems, Applications, and Services (MobiSys). New York: ACM, 2003:163-168.
  • 6Xiao Zhen, Xu Jianliang, Meng Xiaofeng. P-sensitivity: A semantic privacy-protection model for location-based services [C] //Proc of the 2nd Int Workshop on PriVacy-Aware Location-Based Mobile Services(PALMS). Piscataway, NJ: IEEE, 2008:47-54.
  • 7Bamba B, Liu L. Supporting anonymous location queries in mobile environments with privacy grid [C] //Proc of Int Conf on World Wide Web (WWW). New York: ACM, 2008: 237-246.
  • 8Kido H, Yanagisawa Y, Satoh T. Protection of location privacy using dummies for location-based services [C]//Proc of the 26th Int Conf on the Physics of Semiconductors (ICPS). Piseataway, NJ: IEEE, 2005: 1248-1248.
  • 9Ghinita G, Kalnis P, Khoshgozaran A, et al. Private queries in location based services: Anonymizers are not necessary [C] //Proe of ACM SIGMOD 2008. New York: ACM, 2008.
  • 10Xu T, Cai Y. Location anonymity in continuous location based services [C]//Proc of Int Symp on Advances in Geographic Information Systems(GIS). New York: ACM, 2007.

共引文献628

同被引文献18

  • 1雷震,吴玲达,雷蕾,刘宇弛.一种基于构建-竞争聚类及KNNFL的事件探测与追踪系统[J].系统工程理论与实践,2006,26(3):68-74. 被引量:2
  • 2Jia-Ching Y, Huan-Sheng C,Kawuu W L,et al. Semantic trajec-tory-based high utility item recommendation system[J]. ExpertSystems with Applications, 2014,41 (10) : 4762-4776.
  • 3Panagiotis S,Antonis K,Yannis M. GeoSocialRec: explainingrecommendations in location-based social networks [C] // Pro-ceedings of the 17th East-European Conference on Advances inDatabases and Information Systems. Germany . Springer Verlag,2013:84-97.
  • 4Mao Y,Pei-feng Y, Wang-Chien L. Location recommendation forlocation-based social networks [C] // Proceedings of the 18thSIGSPATIAL International Conference on Advances in Geo-graphic Information Systems. New York: Association for Com-puting Machinery, 2010 :458-461.
  • 5Mao Y,Pei-feng Y, Wang-Chien L, et al. Exploiting geographicalinfluence for collaborative point-of-interest recommendation [CJ //Proceedings of the 34th International ACM SIGIR Conferenceon Research and Development in Information Retrieval. NewYork: Association for Computing Machinery,2011:325-334.
  • 6Quan Y,Gao C,Zong-yang M,et al. Time-aware point-of-inte-rest recommendation[C] //Proceedings of the 36th InternationalACM SIGIR Conference on Research and Development in Infor-mation Retrieval. New York: Association for Computing Ma-chinery, 2013 :363-372.
  • 7Jia-Ching Y,Eric Hsueh-Chan L, Wen-ning K,et al. Urbanpoint-of-interest recommendation by mining user check-in be-haviors[C] // Proceedings of the ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining. NewYork: Association for Computing Machinery,2012 : 63-70.
  • 8Nai-Hung C, Chia-Hui C. Evaluation of social> geography, loca-tion effects for point-of-interest recommendation [C] // Procee-dings of IEEE 13th International Conference on Data MiningWorkshops. Los Alamitos: IEEE Computer Society, 2013 : 766-772.
  • 9Jia-Ching Y,Wen-ning K,Vincent S T,et al. Mining user check-in behavior with a random walk for urban point of interest re-commendations [J].ACM Transactions on Intelligent Systemsand Technology,2014,5(3) : 1-26.
  • 10Eunjoon C, Seth A M,Jure L. Friendship and mobility: usermovement in location-based social networks[C] //Proceedings ofthe ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining. New York: Association for ComputingMachinery,2011 : 1082-1090.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部