期刊文献+

一种新的变异因子选择策略 被引量:4

New Strategy Based on Selection of Mutation Operator
下载PDF
导出
摘要 在具有多层学习机制的免疫优化算法中,变异因子的选择概率对算法的有效性起着至关重要的作用。如果选择不够合理,将导致算法容易陷入局部最优,在一定程度上影响解的质量和收敛速度。针对多层学习机制的特点,讨论了各个因子之间的依赖性和相关性,提出了一种新的变异因子选择策略。选择4个基准函数作为测试函数进行了验证,结果表明,解的质量和收敛速度都有了明显的改善。 In immune optimization algorithm with multi-learning mechanism, the selection probability of mutation operators plays a vital role in the effectiveness of the algorithm. If the choice is not appropriate, the algorithm is easy to fall into local optimum, to a certain extent, affects the quality of the solution and reduces the rate of convergence. According to the characteristics of the multi-learning mechanism, the dependence and correlation between mutation operators were discussed. A new mutation operator selection strategy was proposed and four benchmark functions were selected as test functions to verify the performance of the strategy. The result shows that the quality of the solution and the convergence speed have obvious improvement.
出处 《计算机科学》 CSCD 北大核心 2014年第9期225-228,共4页 Computer Science
基金 国家自然科学基金项目(61203325) 上海市教育发展基金会晨光计划项目(12CG35) 中国教育部博士点基金(20120075120004) 中央高校基本科研业务费专项资金(13D110416) 南通市科技计划项目(BK2013050)资助
关键词 多层学习机制 高斯变异 柯西变异 Lateral变异 Baldwinian变异 Multi-learning mechanism Gaussian mutation Cauchy mutation Lateral mutation Baldwinian mutation
  • 相关文献

参考文献20

  • 1de Castro L N. Fundamentals of natural computing: an overview[J]. Physics of Life Reviews, 2007,4( 1 ) : 1-36.
  • 2Worden K, Staszewski W J, Hensman J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechani- cal Systems and Signal Processing,2011,25(1) :4-111.
  • 3Burnet M. The clonal selection theory of acquired immunity [M]. Nashville: Vanderbilt University Press, 1959,3 : 1-6.
  • 4Nossal G J V. Negative selection of lymphocytes[J]. Cell, 1994, 76(2) : 229-239.
  • 5Perelson A S. Immune network theory [J]. Immunological Re- views, 1989,110(1) : 5-36.
  • 6Matzinger P. The danger model:a renewed sense of self[J]. Sci- ence, 2002,296 (5566) : 301-305.
  • 7Gu F, Greensmith J, Aickelin U. Theoretical formulation and analysis of the deterministic dendritic cell algorithm[J]. Biosys- tems, 2013,111 (2) : 127-135.
  • 8Gao S, Wang W, Dai H, et al. Improved clonal selection algo- rithm combined with ant colony optimization[J]. IEICE transac- tions on information and systems,2008,91(6) :1813-1823.
  • 9Liu R, Jiao L, Zhang X, et al. Gene transposon based clone selec- tion algorithm for automatic clustering [J]. Information Sci- enees,2012,204 1-22.
  • 10Dudek G. An Artificial Immune System for Classification with Local Feature Selection[J]. IEEE Transactions on Evolutionary Computation, 2012,16 (6) : 1.

二级参考文献143

  • 1Yao X. A new simulated annealing algorithm, Int. J. Computer Math, 1995, 56: 161-168.
  • 2Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research,1986, 5: 533-549.
  • 3Fogel D B, System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Needham Heights, MA 02194: Ginn Press, 1991.
  • 4Yao X, Liu Y. Evolving neural network ensembles by minimizagion of mutual information. International Journal of Hybrid Intelligent Systems, 2004, 1(1): 12 21.
  • 5Chandra A, Yao X. Evoiutionary framework for the construction of diverse hybrid ensembles, In Proc. the 13th European Symposium on Artificial Neural Networks (ESANN'2005),Bruges, Belgium, April 27-29, 2005, pp,253-258.
  • 6Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Lecture Notes in Computer Science,2004, 3177:619-625.
  • 7Chandra A, Yao X. Ensemble learning using multiobjective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, May 2005 (to appear).
  • 8Abbass H A. A memetic Pareto evolutionary approach to artificial neural networks. In Proc. the 14th Australian Joint Conference on Artificial Intelligence, Berlin, 2000, pp.1-12.
  • 9Liu Y, Yao X. Learning and evo]utlon by minimization of mutual information. Lecture Notes in Computer Science, 2002,2439: 495-504.
  • 10Chandra A, Yao X. Evolving hybrid ensembles of learning machines for better generalisation. Submitted to Neurocomputing, Elsevier, July 2005.

共引文献29

同被引文献35

  • 1贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 3Bayraktar Z,Komurcu M,Werner D H. Wind Driven Optimiza- tion (WDO) :A novel nature-inspired optimization algorithm and its application to eleetromagneties[C]//2010 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE,2010:1-4.
  • 4Bayraktar Z, Komurcu M, Bossard J A, et al. The wind driven optimization technique and its application in electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 2013,61 (5) : 2745-2757.
  • 5Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algo- rithm and wind driven optimization based study of satellite im- age segmentation for multilevel thresholding using Kapurs en- tropy[J]. Expert Systems with Applications, 2014,41 (7) : 3538- 3560.
  • 6Sun J, Wang X, Huang M, et al. A Cloud Resource Allocation Scheme Based on Microeconomics and Wind Driven Optimiza- tion[C]// 2013 8th China Grid Annual Conference (China Grid). IEEE, 2013 : 34-39.
  • 7Ling S H,Iu H H C, Chan K Y, et al. Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applica- tions[J]. IEEE Transactions on Systems, Man, and Cyberne- tics-part B: Cybernetics, 2008,38 (3) : 743- 763.
  • 8朱红求,阳春华,桂卫华,李勇刚.一种带混沌变异的粒子群优化算法[J].计算机科学,2010,37(3):215-217. 被引量:26
  • 9李建荣,廖达雄,陈冰,王刚.基于粒子群算法的车间布局优化应用研究[J].中国制造业信息化(学术版),2011,40(2):6-9. 被引量:4
  • 10潘勇,郭晓东.一种基于遗传算法改进的粒子群优化算法[J].计算机应用与软件,2011,28(9):222-224. 被引量:19

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部