期刊文献+

基于词典的中文微博情绪识别 被引量:18

Emotion Analysis of Chinese Microblogs Using Lexicon-based Approach
下载PDF
导出
摘要 微博等社交媒体已成为表达个人情绪和感受的重要平台。自动分析微博文本表达的情绪对于迅速了解大众情绪走向以及调节个人情绪有着重要的意义。文中首次针对中文微博中的情绪进行自动分析,识别微博表达的喜、哀、怒、惧情绪。提出以词典为依据的基于规则的方法,通过实验详细分析了中文情绪词典在社交媒体文本分析中的现状,讨论了存在的主要问题。并深入讨论了微博中情绪表达的语言特点,为建立高精度的情绪分析系统提供了依据。 The proliferation of microblogs has created a digital platform where people are able to express themselves through a variety of means. Automatic analysis of the emotional content in microblogs plays an important role in capturing popular feelings and adjusting personal mood. In this paper, a lexicon-based approach was proposed to automatically determine whether a microblog expresses one of the four basic emotions:joy, sadness, anger,and fear. We performed an extensive analysis of current Chinese emotion lexicons to understand their roles in analyzing social media text. The experimental results show that lexicon is a crucial resource in emotion analysis. The results also reveal limitations of current Chinese emotion lexicon. The characteristics of emotion in microblgs are identified for building advanced emotion analysis system.
出处 《计算机科学》 CSCD 北大核心 2014年第9期253-258,289,共7页 Computer Science
基金 教育部高等学校博士学科点专项基金(20103218120024 20123218120041) 国家自然科学基金青年科学基金(61202132) 校青年科创基金(NS2012073)资助
关键词 微博 情绪分析 情绪词典 Microblog Emotion analysis Emotion lexicon
  • 相关文献

参考文献18

  • 1Ekman D. Facial Expression and Emotion [J]. American Psy- chologist, 1993,48 (4) : 384-392.
  • 2LIWC[OL. http://www, liwc. net/.
  • 3杨亮,林原,林鸿飞.基于情感分布的微博热点事件发现[J].中文信息学报,2012,26(1):84-90. 被引量:64
  • 4Paltoglou G, Thelwall M. Twitter, MySpace, Digg: Unsupervised sentiment analysis in social media[J]. ACM Transactions on In- telligent Systems and Technology ( TIST ), 2012,3 ( 4 ) : 66.
  • 5谢丽星,周明,孙茂松.基于层次结构的多策略中文微博情感分析和特征抽取[J].中文信息学报,2012,26(1):73-83. 被引量:199
  • 6SemEval2007[OL]. http://nip, cs. swarthmore, edu/semeval/.
  • 7Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polari- ty: an exploration of features for phrase-level sentiment analysis [J]. Computational Linguistics, 2009,35 (3) : 399-433.
  • 8Picard R W. Affeetive Computing[M]. Cambridge: MIT Press, 1997.
  • 9Strapparava C, Mihalcea R. Learning to Identify Emotions inText[C]//Proc. ACM Symposium on Applied computing. For- taleza, Brazil, 2008 : 1556-1560.
  • 10Alto C. Affect in text and speech[M]. University of Illinois at Urbana-Champaign, Department of Linguistics, 2008.

二级参考文献32

  • 1M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 2Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 3M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 4H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 5Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 6Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 7E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.
  • 8Glance, N. , M. Hurst, K. Nigam, et al. 2005. Deri- ving marketing intelligence from online discussion [C]//SIGKDD'05 : 419-428.
  • 9Wilson, T. , J. Wiebe, P. Hoffmann. 2005. Recog- nizing contextual polarity in phrase-level sentiment a- nalysis[C]//HLT-EMNLP'05 .. 347-354.
  • 10Luciano Barbosa, Junlan Feng. 2010. Robust Senti- ment Detection on Twitter from Biased and Noisy Da- ta[C]//Coling 2010 (poster paper) : 36-44.

共引文献256

同被引文献194

引证文献18

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部